Infiltrating pavements are potentially effective climate adaptation measures to counteract arising challenges related to flooding and drought in urban areas. However, they are susceptible to clogging causing premature degradation. As part of the Dutch Delta Plan, Dutch municipalities were encouraged to put infiltrating pavements into practice. Disappointing experiences made a significant number of municipalities decide, however, to stop further implementation. A need existed to better understand how infiltrating pavements function in practice. Through 81 full-scale infiltration tests, we investigated the performance of infiltrating pavements in practice. Most pavements function well above Dutch and international standards. However, variation was found to be high. Infiltration rates decrease over time. Age alone, however, is not a sufficient explanatory factor. Other factors, such as environmental or system characteristics, are of influence here. Maintenance can play a major role in preserving/improving the performance of infiltrating pavements in practice. While our results provide the first indication of the functioning of infiltrating pavement in practice, only with multi-year measurements following a strict monitoring protocol can the longer-term effects of environmental factors and maintenance actually be determined, providing the basis for the development of an optimal maintenance schedule and associated cost–benefit assessments to the added value of this type of climate adaptation.
DOCUMENT
Climate change and changing land use challenge the livability and flood safety of Dutch cities. One option cities have to become more climate-proof is to increase infiltration of stormwater into soil through permeable pavement and thus reduce discharge of stormwater into sewer systems. To analyze the market receptivity for permeable pavements in the Netherlands, this article focuses on the perception of end-users towards key transition factors in the infrastructure transformation processes. Market receptivity was studied on two levels: (1) on the system level, by analyzing 20 key factors in the Dutch urban water sector that enable wider application of permeable pavements; and (2) on the technology level, by analyzing 12 key factors that explain why decision makers select permeable pavements or not. Results show that trust between cooperating partners was perceived as the system level key factor that needs to be improved most to facilitate the wider uptake of permeable pavements. Additionally, the association of end-users with permeable pavement, particularly their willingness to apply these technologies and their understanding of what kinds of benefits these technologies could bring, was regarded the most important receptivity attribute. On the technology level, the reliability of permeable pavement was regarded as the most important end-user consideration for selecting this technology.
DOCUMENT
This study describes field investigations designed to compare the infiltration capacities of 55 permeable pavement systems installed in the Netherlands and in Australia. The ages of the pavements varied from 1 to 12 years. Using infiltrometer testing, the performance of the pavements has been compared in terms of their ability to infiltrate a three month average recurrence interval storm event in the case of the Australian pavements or the minimum specification for European infiltration capacities of 97.2 mm/h for the Dutch pavements. Many of the tested pavements broadly follow a hypothetical decay curve of infiltration rate with age of pavement. However, these are clustered into two distinct groups (Dutch and Australian) with the older Australian pavements appearing to maintain higher infiltration rates relative to their age. The study has shown that the performance of the clogged permeable pavement systems was still generally acceptable, even after many years in service.
DOCUMENT