Living a sedentary lifestyle is one of the major causes of numerous health problems. To encourage employees to lead a less sedentary life, the Hanze University started a health promotion program. One of the interventions in the program was the use of an activity tracker to record participants' daily step count. The daily step count served as input for a fortnightly coaching session. In this paper, we investigate the possibility of automating part of the coaching procedure on physical activity by providing personalized feedback throughout the day on a participant's progress in achieving a personal step goal. The gathered step count data was used to train eight different machine learning algorithms to make hourly estimations of the probability of achieving a personalized, daily steps threshold. In 80% of the individual cases, the Random Forest algorithm was the best performing algorithm (mean accuracy = 0.93, range = 0.88–0.99, and mean F1-score = 0.90, range = 0.87–0.94). To demonstrate the practical usefulness of these models, we developed a proof-of-concept Web application that provides personalized feedback about whether a participant is expected to reach his or her daily threshold. We argue that the use of machine learning could become an invaluable asset in the process of automated personalized coaching. The individualized algorithms allow for predicting physical activity during the day and provides the possibility to intervene in time.
DOCUMENT
Human Digital Twins are an emerging type of Digital Twin used in healthcare to provide personalized support. Following this trend, we intend to elevate our virtual fitness coach, a coaching platform using wearable data on physical activity, to the level of a personalized Human Digital Twin. Preliminary investigations revealed a significant difference in performance, as measured by prediction accuracy and F1-score, between the optimal choice of machine learning algorithms for generalized and personalized processing of the available data. Based on these findings, this survey aims to establish the state of the art in the selection and application of machine learning algorithms in Human Digital Twin applications in healthcare. The survey reveals that, unlike general machine learning applications, there is a limited body of literature on optimization and the application of meta-learning in personalized Human Digital Twin solutions. As a conclusion, we provide direction for further research, formulated in the following research question: how can the optimization of human data feature engineering and personalized model selection be achieved in Human Digital Twins and can techniques such as meta-learning be of use in this context?
DOCUMENT
Background: Follow‑up of curatively treated primary breast cancer patients consists of surveillance and aftercare and is currently mostly the same for all patients. A more personalized approach, based on patients’ individual risk of recurrence and personal needs and preferences, may reduce patient burden and reduce (healthcare) costs. The NABOR study will examine the (cost‑)effectiveness of personalized surveillance (PSP) and personalized aftercare plans (PAP) on patient‑reported cancer worry, self‑rated and overall quality of life and (cost‑)effectiveness. Methods: A prospective multicenter multiple interrupted time series (MITs) design is being used. In this design, 10 participating hospitals will be observed for a period of eighteen months, while they ‑stepwise‑ will transit from care as usual to PSPs and PAPs. The PSP contains decisions on the surveillance trajectory based on individual risks and needs, assessed with the ‘Breast Cancer Surveillance Decision Aid’ including the INFLUENCE prediction tool. The PAP contains decisions on the aftercare trajectory based on individual needs and preferences and available care resources, which decision‑making is supported by a patient decision aid. Patients are non‑metastasized female primary breast cancer patients (N= 1040) who are curatively treated and start follow‑up care. Patient reported outcomes will be measured at five points in time during two years of follow‑up care (starting about one year after treatment and every six months thereafter). In addition, data on diagnostics and hospital visits from patients’ Electronical Health Records (EHR) will be gathered. Primary outcomes are patient‑reported cancer worry (Cancer Worry Scale) and over‑all quality of life (as assessed with EQ‑VAS score). Secondary outcomes include health care costs and resource use, health‑related quality of life (as measured with EQ5D‑5L/SF‑12/EORTC‑QLQ‑C30), risk perception, shared decision‑making, patient satisfaction, societal participation, and cost‑effectiveness. Next, the uptake and appreciation of personalized plans and patients’ experiences of their decision‑making process will be evaluated. Discussion: This study will contribute to insight in the (cost‑)effectiveness of personalized follow‑up care and contributes to development of uniform evidence‑based guidelines, stimulating sustainable implementation of personalized surveillance and aftercare plans. Trial registration: Study sponsor: ZonMw. Retrospectively registered at ClinicalTrials.gov (2023), ID: NCT05975437.
MULTIFILE
The aim of this paper is to design and test a smartphone application which supports personalized running experiences for less experienced runners. As a result of a multidisciplinary three-step design approach Inspirun was developed. Inspirun is a personalized running-application for Android smartphones that aims to fill the gap between running on your own (static) schedule, and having a personal trainer that accommodates the schedule to your needs and profile. With the use of GPS and Bluetooth heart rate monitor support, a user's progress gets tracked. The application adjusts the training schedule after each training session, motivating the runner without a real life coach. Results from three user studies are promising; participants were very satisfied with the personalized approach, both in the profiling and de adaptation of their training scheme.
DOCUMENT
Learning objects are bits of learning content. They may be reused 'as is' (simple reuse) or first be adapted to a learner's particular needs (flexible reuse). Reuse matters because it lowers the development costs of learning objects, flexible reuse matters because it allows one to address learners' needs in an affordable way. Flexible reuse is particularly important in the knowledge economy, where learners not only have very spefic demands but often also need to pay for their own further education. The technical problems to simple and flexible are rapidly being resolved in various learning technology standardisation bodies. This may suggest that a learning object economy, in which learning objects are freely exchanged, updated and adapted, is about to emerge. Such a belief, however, ignores the significant psychological, social and organizational barriers to reuse that still abound. An inventory of these problems is made and possible ways to overcome them are discussed.
DOCUMENT
Als relatief nieuw begrip in de context van e-learning krijgt ‘mobile learning’ steeds meer aandacht, wat ten dele kan worden verklaard door de ontwikkeling en verspreiding van mobiele technologie. Als we de pleitbezorgers van ‘mobile learning’ moeten geloven, dan wordt deze vorm van leren belangrijker en is het denkbaar dat sommige leerprocessen in de toekomst volledig op die wijze vormgegeven zullen worden. Probleem is dat een eenduidige definitie van ‘mobile learning’ nog altijd ontbreekt, dat er meningsverschillen zijn over de technologie die tot het domein van ‘mobile learning’ behoort, en dat er betrekkelijk weinig resultaten zijn van succesvolle inzet van mobiele technologie in leerprocessen. Daarbij wordt onder succesvol verstaan dat het heeft bijgedragen aan de effectiviteit van het leren, en daarmee aan een beter leerresultaat en een efficiënter leerproces, waarbij onder het laatste verstaan wordt dat het maximale leereffect wordt bereikt met een beperkte inzet van mensen en middelen. Deze notitie beoogt enige duidelijkheid te scheppen in de definitiekwestie en in de visies op leren die een rol spelen bij ‘mobile learning’. Vanuit dat perspectief wordt vervolgens ingegaan op kenmerken van mobiele technologie en ontwikkelingen die daarin verwacht worden. Aansluitend wordt er dieper ingegaan op leerprocessen en de rol die mobiele technologie daarin zou kunnen vervullen, waarna de notitie wordt afgesloten met een kijkkader om de mogelijke inzet en betekenis van ‘mobile learning’ in onderwijssituaties te kunnen duiden en beoordelen.
DOCUMENT
For people with early-dementia (PwD), it can be challenging to remember to eat and drink regularly and maintain a healthy independent living. Existing intelligent home technologies primarily focus on activity recognition but lack adaptive support. This research addresses this gap by developing an AI system inspired by the Just-in-Time Adaptive Intervention (JITAI) concept. It adapts to individual behaviors and provides personalized interventions within the home environment, reminding and encouraging PwD to manage their eating and drinking routines. Considering the cognitive impairment of PwD, we design a human-centered AI system based on healthcare theories and caregivers’ insights. It employs reinforcement learning (RL) techniques to deliver personalized interventions. To avoid overwhelming interaction with PwD, we develop an RL-based simulation protocol. This allows us to evaluate different RL algorithms in various simulation scenarios, not only finding the most effective and efficient approach but also validating the robustness of our system before implementation in real-world human experiments. The simulation experimental results demonstrate the promising potential of the adaptive RL for building a human-centered AI system with perceived expressions of empathy to improve dementia care. To further evaluate the system, we plan to conduct real-world user studies.
DOCUMENT
Background: The immunization uptake rates in Pakistan are much lower than desired. Major reasons include lack of awareness, parental forgetfulness regarding schedules, and misinformation regarding vaccines. In light of the COVID-19 pandemic and distancing measures, routine childhood immunization (RCI) coverage has been adversely affected, as caregivers avoid tertiary care hospitals or primary health centers. Innovative and cost-effective measures must be taken to understand and deal with the issue of low immunization rates. However, only a few smartphone-based interventions have been carried out in low- and middle-income countries (LMICs) to improve RCI. Objective: The primary objectives of this study are to evaluate whether a personalized mobile app can improve children’s on-time visits at 10 and 14 weeks of age for RCI as compared with standard care and to determine whether an artificial intelligence model can be incorporated into the app. Secondary objectives are to determine the perceptions and attitudes of caregivers regarding childhood vaccinations and to understand the factors that might influence the effect of a mobile phone–based app on vaccination improvement. Methods: A mixed methods randomized controlled trial was designed with intervention and control arms. The study will be conducted at the Aga Khan University Hospital vaccination center. Caregivers of newborns or infants visiting the center for their children’s 6-week vaccination will be recruited. The intervention arm will have access to a smartphone app with text, voice, video, and pictorial messages regarding RCI. This app will be developed based on the findings of the pretrial qualitative component of the study, in addition to no-show study findings, which will explore caregivers’ perceptions about RCI and a mobile phone–based app in improving RCI coverage. Results: Pretrial qualitative in-depth interviews were conducted in February 2020. Enrollment of study participants for the randomized controlled trial is in process. Study exit interviews will be conducted at the 14-week immunization visits, provided the caregivers visit the immunization facility at that time, or over the phone when the children are 18 weeks of age. Conclusions: This study will generate useful insights into the feasibility, acceptability, and usability of an Android-based smartphone app for improving RCI in Pakistan and in LMICs.
DOCUMENT
From the article: "The educational domain is momentarily witnessing the emergence of learning analytics – a form of data analytics within educational institutes. Implementation of learning analytics tools, however, is not a trivial process. This research-in-progress focuses on the experimental implementation of a learning analytics tool in the virtual learning environment and educational processes of a case organization – a major Dutch university of applied sciences. The experiment is performed in two phases: the first phase led to insights in the dynamics associated with implementing such tool in a practical setting. The second – yet to be conducted – phase will provide insights in the use of pedagogical interventions based on learning analytics. In the first phase, several technical issues emerged, as well as the need to include more data (sources) in order to get a more complete picture of actual learning behavior. Moreover, self-selection bias is identified as a potential threat to future learning analytics endeavors when data collection and analysis requires learners to opt in."
DOCUMENT
One of the claims the OER movement makes is that availability of (open) digital learning materials improves the quality of education. The promise is the ability to offer educational programs that take into account specific demands of the learner. The question is how to reach a situation where a customized demand can be met using OER with acceptable quality against acceptable costs. This situation resembles mass customization as is common in industry for several decades now. Techniques from an industry where an end product is assembled with the demands of the customer as a starting point can be translated to the field of education where courses and learning paths through a curriculum are assembled using a mixture of open and closed learning materials and learning services offered by an institution. Advanced IT support for both the modeling of the learning materials and services and a configurator to be used by a learner are necessary conditions for this approach.
MULTIFILE