The first observations of juvenile lemon sharks (Negaprion brevirostris) around the island of Sint Eustatius are described. Observations were made in the summer of 2015 and spring of 2016 and only consisted of individuals estimated to be smaller than 65 cm in total length (TL). These observations represent a range extension of this species within the waters of the Dutch Caribbean.
MULTIFILE
Closer Connections aims to build a coherent, cross-academy, virtual- and augmented reality strategy to contribute to the European agenda: “a Europe fit for the digital age”. Closer Connections enables the SPRONG group DIGIREAL to strengthen its visibility and reputation on a European level to build strong alliances with European VR/AR coalitions and associations and apply for EU grants. In this project, a strategic paper on market assessment is developed to determine our position within this European agenda. This is followed by a roadmap for the future utilisation of our rare assets (XR-stage, photogrammetry, etc.), and raise awareness of the unique combination of excellent facilities, creative staff and talented students.
In this project, the AGM R&D team developed and refined the use of a facial scanning rig. The rig is a physical device comprising multiple cameras and lighting that are mounted on scaffolding around a 'scanning volume'. This is an area at which objects are placed before being photographed from multiple angles. The object is typically a person's head, but it can be anything of this approximate size. Software compares the photographs to create a digital 3D recreation - this process is called photogrammetry. The 3D model is then processed by further pieces of software and eventually becomes a face that can be animated inside in Unreal Engine, which is a popular piece of game development software made by the company Epic. This project was funded by Epic's 'Megagrant' system, and the focus of the work is on streamlining and automating the processing pipeline, and on improving the quality of the resulting output. Additional work has been done on skin shaders (simulating the quality of real skin in a digital form) and the use of AI to re/create lifelike hair styles. The R&D work has produced significant savings in regards to the processing time and the quality of facial scans, has produced a system that has benefitted the educational offering of BUas, and has attracted collaborators from the commercial entertainment/simulation industries. This work complements and extends previous work done on the VIBE project, where the focus was on creating lifelike human avatars for the medical industry.