Abstract Background: To address the lack of social interaction and meaningful activities for persons with dementia (PWD) in nursing homes an artistic Photo-Activity was designed. The present study aims to develop a digital version of the Photo-Activity and to investigate its implementation and impact on nursing home residents with advanced dementia, and their (in)formal carers. Methods: First, within a user-participatory design, a digital-app version of the Photo-Activity will be developed and pilot-tested, in co-creation with (in)formal carers and PWD. Next, the feasibility and effectiveness of the Photo-Activity versus a control activity will be explored in a randomized controlled trial with nursing home residents (N=90), and their (in)formal carers. Residents will be offered the Photo- Activity or the control activity by (in)formal carers during one month. Measurements will be conducted by independent assessors at baseline (T0), after one month (T1) and at follow up, two weeks after T1 (T2). Qualitative and quantitative methods will be used to investigate the effects of the intervention on mood, social interaction and quality of life of the PWD, sense of competence of informal carers, empathy and personal attitude of the formal carers, and quality of the relationship between the PWD, and their (in)formal carers. In addition, a process evaluation will be carried out by means of semi-structured interviews with the participating residents and (in)formal carers. Finally, an implementation package based on the process evaluation will be developed, allowing the scaling up of the intervention to other care institutions. Discussion: Results of the trial will be available for dissemination by Spring 2023. The digital Photo-Activity is expected to promote meaningful connections between the resident with dementia, and their (in)formal carers through the facilitation of person-centered conversations. Trial registration: Netherlands Trial Register: NL9219; registered (21 January 2021); NTR (trialregister.nl)
This paper introduces the open-source Urban Belonging (UB) toolkit, designed to study place attachments through a combined digital, visual and participatory methodology that foregrounds lived experience. The core of the toolkit is the photovoice UB App, which prompts participants to document urban experiences as digital data by taking pictures of the city, annotating them, and reacting to others’ photos. The toolkit also includes an API interface and a set of scripts for converting data into visualizations and elicitation devices. The paper first describes how the app’s design specifications were co-created in a process that brought in voices from different research fields, planners from Gehl Architects, six marginalized communities, and citizen engagement professionals. Their inputs shaped decisions about what data collection the app makes possible, and how it mitigates issues of privacy and visual and spatial literacy to make the app as inclusive as possible. We document how design criteria were translated into app features, and we demonstrate how this opens new empirical opportunities for community engagement through examples of its use in the Urban Belonging project in Copenhagen. While the focus on photo capture animates participants to document experiences in a personal and situated way, metadata such as location and sentiment invites for quali-quantitative analysis of both macro trends and local contexts of people’s experiences. Further, the granularity of data makes both a demographic and post-demographic analysis possible, providing empirical ground for exploring what people have in common in what they photograph and where they walk. And, by inviting participants to react to others’ photos, the app offers a heterogeneous empirical ground, showing us how people see the city differently. We end the paper by discussing remaining challenges in the tool and provide a short guide for using it.
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.
Carbon dioxide (CO2) is the final waste product for all carbon-containing products. Its reuse will partly mitigate climate change and, in addition, provide a valuable feedstock for fuels and chemicals. Zuyd University of Applied Sciences (ZUYD), Innosyn B.V., and Chemtrix B.V. will develop a flow reactor for photochemical reactions with gases conducted at high pressure. This reactor is the necessary first development towards artificial photosynthesis: the connection of hydrogen (H2) to the ultimate waste product CO2 to store energy in a chemical bond, in order to produce so-called solar fuels and C1-chemicals/products. With an increasing amount of renewables in the energy system, energy storage becomes increasingly important to continuously match supply and demand. In a cooperation between three ZUYD research groups with Chemtrix B.V. and Innosyn B.V., multiple cost-efficient reactor designs for this flow reactor will be analyzed and two designs will be selected to be implemented by small extensions of existing equipment. Simultaneously, two appropriate test re-actions involving a gas (E-Z isomerization followed by hydrogenation) and with a CO2 analogue (a hydrogenation of a carboxylic acid) will be developed to be conducted in the reactor when the con-struction has been finished. We aim to disseminate the new capabilities developed in this KIEM proposal by the project partners with respect to the new reactors to several selected stakeholders. Furthermore, to expand the project several options (SIA-RAAK and H2020 grants) will be explored.
In this project, Photons in Focus, researchers from The Hague University of Applied Sciences will work together with the company Photosynthetic to fabricate high-quality microlenses that will optimally focus light onto microscopic light detectors. Specifically, the microlenses will be designed to focus light onto superconducting nanowire single-photon detectors (SNSPDs) from the company Single Quantum. SNSPDs are cryogenic single-photon detectors with photon detection efficiencies up to 99% and timing resolutions down to 15 picosecond. Recently, Single Quantum has been developing arrays of SNSPDs for free-space biomedical imaging and deep space communications. The photon detection efficiency of these arrays is suboptimal, because 15-20% of the light falls onto nonsensitive areas. In Photons in Focus, fabrication of two types of microstructures will be explored for optimally focusing light onto these SNSPDs and improving the photon detection efficiency. First, 3-dimensional microlenses will be created at Photosynthetic using their method of dual-wavelength volumetric microlithography. Second, phase-reversal Fresnel zone plates will be fabricated using standard 2-dimensional photolithography at The Hague University of Applied Sciences. Both types of microstructures will be tested for their focusing properties and potential optical losses, and their ability to enhance to photon detection efficiency of SNSPDs in cryogenic conditions.