The adaptivity of façades is increasingly recognized as an important functional feature to be integrated with the state-of–the-art building technology. The aim is thereby to control its reversible system states in real-time to adapt to current indoor and outdoor conditions. Concepts reported elsewhere integrate two or more functions related to structural integrity, ventilation, heating and cooling, solar protection, as well as energy generation and storage. Although advantages are perceived obvious, the number of realized case studies remains limited. Triggered by this observation, the authors of this contribution report research findings from a literature study and interviews with stakeholders in the field, including contractors, building consultants and architects. The three key-findings suggest that (1) the functions daylighting and energy generation/storage are most commonly integrated into façades or façade components characterized as being adaptive, (2) interviewees are divided on the implementation potential of most of the designs/concepts and (3) the aesthetics of the design, (investment) costs, durability and required maintenance are critical for a widespread market uptake. Herewith, this paper contributes new knowledge to the discussion related to finding the right level of system integration in building technology.
MULTIFILE
The Johan Cruijff ArenA (JC ArenA) is a big events location in Amsterdam, where national and international football matches, concerts and music festivals take place for up to 68,000 visitors. The JC ArenA is already one of the most sustainable, multi-functional stadia in the world and is realizing even more inspiring smart energy solutions for the venue, it’s visitors and neighbourhood. The JC ArenA presents a complex testbed for innovative energy services, with a consumption of electricity comparable to a district of 2700 households. Thanks to the 1 MWp solar installation on the roof of the venue, the JC ArenA already produces around 8% of the electricity it needs, the rest is by certified regional wind energy.Within the Seev4-City project the JC ArenA has invested in a 3 MW/2.8 MWh battery energy storage system, 14 EV charging stations and one V2G charging unit. The plan was to construct the 2.8 MWh battery with 148 2nd life electric car batteries, but at the moment of realisation there were not enough 2nd life EV batteries available, so 40% is 2nd life. The JC ArenA experienced compatibility issues installing a mix of new and second-life batteries. Balancing the second-life batteries with the new batteries proved far more difficult than expected because an older battery is acting different compared to new batteries.The EV-based battery energy storage system is unique in that it combines for the first time several applications and services in parallel. Main use is for grid services like Frequency Containment Reserve, along with peak shaving, back-up services, V2G support and optimization of PV integration. By integrating the solar panels, the energy storage system and the (bi-directional) EV chargers electric vehicles can power events and be charged with clean energy through the JC ArenA’s Energy Services. These and other experiences and results can serve as a development model for other stadiums worldwide and for use of 2nd life EV batteries.The results of the Seev4-City project are also given in three Key Performance Indicators (KPI): reduction of CO2-emission, increase of energy autonomy and reduction in peak demand. The results for the JC ArenA are summarised in the table below. The year 2017 is taken as reference, as most data is available for this year. The CO2 reductions are far above target thanks to the use of the battery energy storage system for FCR services, as this saves on the use of fossil energy by fossil power plants. Some smaller savings are by replacement of ICEby EV. Energy autonomy is increased by better spreading of the PV generated, over 6 instead of 4 of the 10 transformers of the JC ArenA, so less PV is going to the public grid. A peak reduction of 0.3 MW (10%) is possible by optimal use of the battery energy storage system during the main events with the highest electricity demand.
Grid congestion has caused significant issues for many businesses and consumers, leading to pressing questions about potential expansion, the configuration of electrical infrastructure, opportunities to reduce energy usage, and the impacts of installing photovoltaic (PV) systems. This project is dedicated to developing a digital twin energy management system within an energy hub to enhance efficiency and sustainability. By integrating state-of-the-art digital twin technology with various energy systems, the project, led technically by HAN University of Applied Sciences and with security managed by Impact Iot Solutions, aims to optimize the management of diverse energy sources like solar panels, heat pumps, and storage systems. Central to our approach is ensuring that all data collected during the project, which includes system performance metrics but excludes any personal user information, is used responsibly and stored securely. Local storage at the energy hub allows real-time monitoring and data analysis, with secure remote access for project partners to facilitate collaboration. At the project's conclusion, non-sensitive data will be made publicly available on an open platform, promoting transparency and enabling further research and development by the broader community. This initiative not only seeks to improve energy management practices but also aims to serve as a model for future digital twin implementations in energy hubs worldwide. By focusing on innovation, privacy, and community engagement, the project represents a significant step forward in the integration of digital technologies into sustainable energy solutions.