Background: The objective of this study was to derive evidence-based physical activity guidelines for the general Dutch population. Methods: Two systematic reviews were conducted of English language meta-analyses in PubMed summarizing separately randomized controlled trials and prospective cohort studies on the relation between physical activity and sedentary behaviour on the one hand and the risk of all-cause mortality and incidence of 15 major chronic diseases and conditions on the other hand. Other outcome measures were risk factors for cardiovascular disease and type 2 diabetes, physical functioning, and fitness. On the basis of these reviews, an expert committee derived physical activity guidelines. In deriving the guidelines, the committee first selected only experimental and observational prospective findings with a strong level of evidence and then integrated both lines of evidence. Results: The evidence found for beneficial effects on a large number of the outcome measures was sufficiently strong to draw up guidelines to increase physical activity and reduce sedentary behaviour, respectively. At the same time, the current evidence did not provide a sufficient basis for quantifying how much physical activity is minimally needed to achieve beneficial health effects, or at what amount sedentary behaviour becomes detrimental. A general tenet was that at every level of current activity, further increases in physical activity provide additional health benefits, with relatively larger effects among those who are currently not active or active only at light intensity. Three specific guidelines on (1) moderate- and vigorous-intensity physical activity, (2) bone- and musclestrengthening activities, and (3) sedentary behaviour were formulated separately for adults and children. Conclusions: There is an unabated need for evidence-based physical activity guidelines that can guide public health policies. Research in which physical activity is measured both objectively (quantity) and subjectively (type and quality) is needed to provide better estimates of the type and actual amount of physical activity required for health.
BACKGROUND: Chronic musculoskeletal pain (CMP), Generalized Joint Hypermobility (GJH) and pain-related fear have influence on physical functioning in adolescents.AIM: to evaluate differences in physical functioning between adolescents with CMP, GJH or the combination of both, and in addition evaluate the potential contribution of pain-related fear.DESIGN: The design of this study was observational and cross-sectional.SETTING: The adolescents with CMP were recruited by a physician in rehabilitation medicine and measured in the university outpatient rehabilitation clinic (Adelante/Maastricht University Medical Center+, the Netherlands). The adolescents without CMP were recruited in the Southern area of the Netherlands and measured in the university outpatient rehabilitation clinic (Adelante/Maastricht University Medical Center+, the Netherlands).POPULATION: Four subgroups of adolescents were included; 21 adolescents with CMP without GJH, 9 adolescents with CMP and GJH, 51 adolescents without CMP without GJH, and 11 adolescents without CMP with GJH.METHODS: Outcome measures were muscle strength and endurance, motor performance, physical activity level, and pain-related fear. Hierarchical regression analyses were used to study differences in physical functioning and the contribution of pain-related fear in adolescents with/without CMP as well as with/without GJH.RESULTS: Adolescents with CMP had decreased muscle strength (P=0.01), endurance (P=0.02), and lower motor performance (P<0.01) compared to adolescents without CMP. Higher levels of pain-related fear were related to decreased muscle strength (P=0.01), endurance (P<0.01), and motor performance (P<0.01). No differences in physical functioning and pain-related fear between hypermobile and non-hypermobile adolescents with CMP were found.CONCLUSIONS: Adolescents with CMP had decreased muscle strength and motor performance associated with increased levels of pain-related fear compared to adolescents without CMP. The association of being hypermobile with physical functioning is not more pronounced in adolescents with CMP.CLINICAL REHABILITATION IMPACT: No differences were found in physical functioning and pain-related fear between hypermobile adolescents with CMP compared to non-hypermobile adolescents with CMP. Future rehabilitation treatment in hypermobile adolescents with CMP should also focus on psychological components, such as pain-related fear.
Introduction Physical activity is suggested to be important for low back pain (LBP) but a major problem is the limited validity of the measurement of physical activities, which is usually based on questionnaires. Physical fitness can be viewed as a more objective measurement and our question was how physical activity based on self-reports and objective measured levels of physical fitness were associated with LBP. Materials and methods We analyzed cross-sectional data of 1,723 police employees. Physical activity was assessed by questionnaire (SQUASH) measuring type of activity, intensity, and time spent on these activities. Physical fitness was based on muscular dynamic endurance capacity and peak oxygen uptake (VO2 peak). Severe LBP, interfering with functioning, was defined by pain ratings C4 on a scale of 0–10. Results Higher levels of physical fitness, both muscularand aerobic, were associated with less LBP (OR: 0.54; 95%CI: 0.34–0.86, respectively, 0.59: 95%CI: 0.35–0.99). For self-reported physical activity, both a low and a high level of the total physical activity pattern were associated with an increase of LBP (OR: 1.52; 95%CI: 1.00–2.31, respectively, 1.60; 95%CI: 1.05–2.44). Conclusion These findings suggest that physical activity of an intensity that improves physical fitness may be important in the prevention of LBP
Regular physical activity is considered to be an important component of a healthy lifestyle that decreases the risk of coronary heart disease, diabetes mellitus type 2, hypertension, colon and breast cancer, obesity and other debilitating conditions. Physical activity can also improve functional capacity and therefore also the quality of life in older adults. Despite all these favorable aspects, a substantial part of the Dutch older adult population is still underactive or even sedentary. To change this for the better, the Groningen Active Living Model (GALM) was developed.Aim of GALM is to stimulate recreational sports activities in sedentary and underactive older adults in the 55-65 age band. After a door-to-door visit as part of an intensive recruitment phase, a fitness test was conducted followed by the GALM recreational sports program. This program was based on principles from evolutionary-biological play theory and insights fromsocial cognitive theory. The program was versatile in nature (e.g. softball, dance, self-defense, swimming, athletics, etc.) in two main ways: a) to improve compliance with the program different sports were offered, which was reported to be more appealing for older adults; b) by aiming at more components of motor fitness (e.g. strength, flexibility, speed, endurance and coordination). Between 1997 and 2005 more than 552,000 persons were visited door-to-door, over 55,700 were tested, and 41,310 participated in the GALM recreational sports program. The aim of the present thesis is to determine the effects of participation in the GALM recreational sports program on physical activity, health and fitness outcomes.Chapter 2 describes the effectiveness of the GALM recruitment in selecting and recruiting sedentary and underactive older adults. Three municipalities in the Netherlands were selected, and in every municipality four neighborhoods were included. Two of each of the four neighborhoods were randomly assigned as intervention and the others as control neighborhoods. In total, 8,504 persons were mailed and received a home visit. During this home visit the GALM recruitment questionnaire was collected on which the selection between sedentary/underactive and physically active older adults was based. Ultimately we succeeded inincluding 12.3% (315 of the 2,551 qualifying) of the older adults, 79.4% of whom could be indeed considered sedentary or underactive. The cost of successfully recruiting an older adult was estimated at $84.To assess the effects of a physical activity intervention on health and fitness and explain the results, it is necessary to know program characteristics regarding frequency, intensity, time and content of the activities. With respect to the GALM recreational sports activity program, the only unknown characteristic was intensity. Chapter 3 describes the intensity of this program systematically. Using heart rate monitors, data of 97 persons (mean age 60.1 yr) were collected in three municipalities. The mean intensity of all 15 GALM sessions was 73.7% of the predicted maximal heart rate. Six percent of the monitored heart rate time could be classified as light, 33% as moderate and 61% as hard. In summary, the GALM recreational sports program meets the 1998 ACSM recommendations for intensity necessary to improve cardiorespiratory fitness.Chapters 4 and 5 describe the effects of 6 and 12 months of participation in the GALM recreational sports program, and 181 persons were followed over time. Results after 6 months revealed only few significant between-group differences favoring the intervention group (i.e. sleep, diastolic blood pressure, perceived fitness score and grip strength). Changes in energyexpenditure for leisure-time physical activities (EELTPA) showed an increase in both study groups. From 6 to 12 months a decrease in EELTPA occurred in the intervention group and an increase in the control group. The significant positive time effects for the health outcomes (diastolic blood pressure, BMI, percentage of body fat) that were found after 6 months were diminishedfrom 6 to 12 months. However, the energy expenditure for recreational sports activities (EERECSPORT) demonstrated a continuous increase over 12 months. Parallel to this, significant main effects for time were found in performance-based fitness outcomes (i.e. simple reaction time, leg strength, flexibility of hamstrings and lower back, and aerobic endurance). After 12 months only a significant between-group difference for flexibility of the hamstrings andlower back was found, favoring the control group. In conclusion, a short-term increase in EELTPA was found with accompanying improvements in health outcomes that more or less disappeared in 6 to 12 months. In the long term, results showed a continuous increase in EERECSPORT and performance-based fitness. This latter increase is probably a reflection of the significantimprovement over time in EERECSPORT and the fact that recreational sports activities are of a higher intensity.Aerobic endurance is regarded as the most important component of motor fitness that is relevant for older adults to function independently. In Chapter 6, the development in aerobic endurance after 18 months of participation in the GALM recreational sports program was assessed by means of changes in heart rate during fixed submaximal exercise. Since both groups were comparable regarding changes in energy expenditure for physical activity after 6 months and testing confirmed this, both groups were combined and considered as one group. Multilevel analyses were conducted and models for change were developed. A significant decrease in heart rate over time was found at all walking speeds (4, 5, 6 and 7 km/h). The average decrease in heart rate was 5.5, 6.0, 10.0 and 9.0 beats/min for the 4, 5, 6 and 7 km/h walking speeds, respectively. The relative decrease varied from 5.1 to 7.4% relative to average heart rates at baseline. These results illustrate that participation in the GALM recreational sports program has a positive significant effect on aerobic endurance, and that the participants are able to perform at submaximal intensity more easily.Based on the overall results it can be concluded that this study contributes to the field in how to effectively recruit sedentary and underactive older adults and stimulate them to become and stay active in recreational sports activities. As far as we know, this recruitment in combination with the recreational sport program is not only unique but also effective toward increasing performance-based fitness in the long term. Short-term effects were found in other leisure-time activities and health outcomes. To further stimulate other leisure-time and probably health outcomes besides the favorable effects that were already seen, additional interventions that pay more attention to behavioral change in terms of how to integrate other activities besides sports activities are recommended.