The present social and environmental challenges, the impact of climate change andthe pandemic, revealed the urgency and the opportunity to rethink urban designthrough its renewed spaces and temporalities. The pandemic offered a ‘natural exper-iment’ to explore and develop new perspectives, making public spaces more resilient.Contributing towards a rethink of these spaces, the present paper explores adaptivearchitecture with responsive technologies and their capability of shaping public spacesto constitute a conversation piece with the surrounding environment. This approachcombines and reflects different disciplinary fields: architecture, civic interaction and ur-ban design. The exploration works around a speculative design case – produced aspart of broader research at the Amsterdam University of Applied Science in collabora-tion with the Master in Digital Design.
Piëzo materialen worden al veel toegepast. Er zijn diverse nieuwe ontwikkelingen, zoals het piëzo effect in composieten (PVDF). Het blijkt dat deze ontwikkelingen nog in een pril stadium zijn en voorlopig niet commercieel beschikbaar. Ondanks dat het piëzo principe al jaren bestaat weten ontwerpers er nog relatief weinig van. Het piëzo principe is misschien wel bekend, maar hoe deze materialen te gebruiken in een productontwerp is een grote stap verder. Bij piëzo wordt een mechanische spanning omgezet in een elektrische spanning en vice versa. Er zijn vele piëzo elementen (halffabricaten) commercieel beschikbaar. Al naargelang de gewenste toepassing, lineaire beweging, energy harvesting, sensor etc. kan het geschikte element worden gekozen. In dit document wordt de piëzo techniek uitgelegd aan de hand van voorbeelden. Doel is om inzicht te krijgen in de mogelijkheden, om zo een geschikte piëzo-techniek te kiezen. Dit document is opgeleverd in het project Innovatief Materialen Platform Twente (IMPT). In dit project heeft het IMPT 75 innovatieve materialen in kaart gebracht. Met een tiental materialen is toegepast onderzoek gedaan, zodat ondernemers en ontwerpers weten of en hoe zij deze kunnen toepassen.
MULTIFILE
TU Delft, in collaboration with Gravity Energy BV, has conducted a feasibility study on harvesting electric energy from wind and vibrations using a wobbling triboelectric nanogenerator (WTENG). Unlike conventional wind turbines, the WTENG converts wind/vibration energy into contact-separation events through a wobbling structure and unbalanced mass. Initial experimental findings demonstrated a peak power density of 1.6 W/m² under optimal conditions. Additionally, the harvester successfully charged a 3.7V lithium-ion battery with over 4.5 μA, illustrated in a self-powered light mast as a practical demonstration in collaboration with TimberLAB. This project aims to advance this research by developing a functioning prototype for public spaces, particularly lanterns, in partnership with TimberLAB and Gravity Energy. The study will explore the potential of triboelectric nanogenerators (TENG) and piezoelectric materials to optimize energy harvesting efficiency and power output. Specifically, the project will focus on improving the WTENG's output power for practical applications by optimizing parameters such as electrode dimensions and contact-separation quality. It will also explore cost-effective, commercially available materials and best fabrication/assembly strategies to simplify scalability for different length scales and power outputs. The research will proceed with the following steps: Design and Prototype Development: Create a prototype WTENG to evaluate energy harvesting efficiency and the quantity of energy harvested. A hybrid of TENG and piezoelectric materials will be designed and assessed. Optimization: Refine the system's design by considering the scaling effect and combinations of TENG-piezoelectric materials, focusing on maximizing energy efficiency (power output). This includes exploring size effects and optimal dimensions. Real-World Application Demonstration: Assess the optimized system's potential to power lanterns in close collaboration with TimberLAB, DVC Groep BV and Gravity Energy. Identify key parameters affecting the efficiency of WTENG technology and propose a roadmap for its exploitation in other applications such as public space lighting and charging.