An ELISA was set up using polyvinylchloride microtiter plates coated with rabbit anti-UK IgG's and affino-purified goat anti-UK IgG's as second antibody. Detection occurred with rabbit anti-goat IgG antibodies conjugated with alkaline phosphatase. The assay is specific for urokinase (UK) with a detection limit of 100 pg/ml sample. Tissue-type plasminogen activator, up to concentrations of 100 ng/ml, does not interfere. The assay measures the antigen of the inactive zymogen pro-UK, the active enzyme UK and the UK-inhibitor complex with equal efficiency and gives the total UK antigen present, irrespective of its molecular form. Culture media of fibroblasts, endothelial- and kidney cells showed, despite the absence of active UK, antigen levels of 1.2, 23 and 65 ng/ml, respectively. In human plasma the UK concentration was found to be 3.5 +/- 1.4 ng/ml (mean +/- SD, n = 54). The inter- and intra-assay variations were 20% and 6%, respectively.
Plasma urokinase, a plasminogen activator immunochemically related to urinary urokinase (UK), was removed from human plasma (3.5 ng/ml) by immuno-depletion with antibodies raised against UK. The remaining plasminogen activator activity of the depleted plasma could not be inhibited by anti-UK antibodies and a sensitive ELISA for UK did not detect any UK levels that were higher than the background of the assay (0.1 ng/ml). However, when the depleted plasma was subjected to SDS-PAGE, substantial amounts of protein were found hereafter around 110 and 46 kD which now gave a positive reaction in the ELISA (35-350 ng/ml plasma). From these observations it is concluded that in human plasma two types of UK-related protein occur: Type I, among which the plasma urokinase, has antigenic determinants which are directly accessible to the anti-UK antibodies, Type II has determinants in a latent form. The function of the 110 kD type-II protein is that of a plasminogen activator; that of the 46 kD protein is not yet clear.
The specific fibrinolytic properties of both high molecular weight (55 kd) and low molecular weight (30 kd) pro-urokinase from a monkey kidney cell culture were evaluated in a plasma clot lysis system and compared with those of human urokinase. The system was composed of a radiolabelled plasma clot immersed in plasma containing the fibrinolytic agent. On unit base, 55 kd pro-urokinase was approximately 1.5 times more effective in lysing the clot than 30 kd pro-urokinase and equally effective as urokinase. In contrast to urokinase, both pro-urokinase forms induced clot lysis without degrading fibrinogen in the surrounding plasma. However, a considerable activation of the fibrinolytic system in the plasma occurred as a large amount of alpha 2-antiplasmin was consumed, indicating that pro-urokinase was not fully fibrin-specific. Quenching antibodies against tissue-type plasminogen activator (t-PA) added to the plasma clot lysis system retarded but did not prevent pro-urokinase-induced clot lysis. This indicated that not only was t-PA in plasma involved in the activation of pro-urokinase (probably via plasmin), but that an additional mechanism also existed.