Stormwaters, flowing into storm sewers, are known to significantly increase the annual pollutant loads entering urban receiving waters and this results in significant degradation of the receiving water quality. Knowledge of the characteristics of stormwater pollution enables urban planners to incorporate the most appropriate stormwater management strategies to mitigate the effects of stormwater pollution on downstream receiving waters. This requires detailed information on stormwater quality, such as pollutant types, sediment particle size distributions, and how soluble pollutants and heavy metals attach themselves to sediment particles. This study monitored stormwater pollution levels at over 150 locations throughout the Netherlands. The monitoring has been ongoing for nearly 15 years and a total of 7,652 individual events have been monitored to date. This makes the database the largest stormwater quality database in Europe. The study compared the results to those presented in contemporary international stormwater quality research literature. The study found that the pollution levels at many of the Dutch test sites did not meet the requirements of the European Water Framework Directive (WFD) and Dutch Water Quality Standards. Results of the study are presented and recommendations are made on how to improve water quality with the implementation of Sustainable Urban Drainage Systems (SUDS) devices.
In recent years, there has been a steady increase in the number of bioretention systems installed worldwide. However, there has only been limited research on the long-term effectiveness of these sustainable urban drainage system devices. This paper presents the results of a series of controlled field experiments investigating the pollutant removal efficiency of three bio-filtration system that have been in service for over five years in the Sunshine Coast in Australia. The results of this study suggest that the long-term pollution removal performance of these systems may not be as effective as previously thought and further research is needed.
Living walls are increasingly becoming tools for green climate adaptation in the urban context, but distribution efforts are dampened by high investment and operational costs. Those costs are derived mainly from designing and manufacturing unique equipment for such new projects. A system using wastewater could relieve some of these costs by decreasing their irrigation and fertigation needs. Muuras is developing helophyte filters integrated into living wall systems that can readily be attached to any wall surface, with the ultimate purpose of local water recycling. Additionally, based on the fact that Muuras is a pre-engineered company, their product is modular, which means that a considerable advantage is recognized regarding the decreased capital cost. To realize scalable implementation of such a system, research with regards to the purification capabilities of lightweight substrates and small wetland plant species is imperative. In SoW & FloW, the NHL Stenden Water Technology Professorship proposes a collaboration between two SME’s (Muuras, Greenwave Systems) and a company (DeSaH), to evaluate a selection of substrates and endemic plant species based on their capability to use domestic wastewater as an irrigation source.