BACKGROUND: Chest physiotherapy is widely used in people with cystic fibrosis in order to clear mucus from the airways.OBJECTIVES: To determine the effectiveness and acceptability of chest physiotherapy compared to no treatment or spontaneous cough alone to improve mucus clearance in cystic fibrosis.SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of the most recent search of the Group's Cystic Fibrosis Trials Register: 04 February 2013.SELECTION CRITERIA: Randomised or quasi-randomised clinical studies in which a form of chest physiotherapy (airway clearance technique) were taken for consideration in people with cystic fibrosis compared with either no physiotherapy treatment or spontaneous cough alone.DATA COLLECTION AND ANALYSIS: Both authors independently assessed study eligibility, extracted data and assessed study quality. There was heterogeneity in the published outcomes, with variable reporting which meant pooling of the data for meta-analysis was not possible.MAIN RESULTS: The searches identified 144 studies, of which eight cross-over studies (data from 96 participants) met the inclusion criteria. There were differences between studies in the way that interventions were delivered, with several of the intervention groups combining more than one treatment modality. One included study looked at autogenic drainage, six considered conventional chest physiotherapy, three considered oscillating positive expiratory pressure, seven considered positive expiratory pressure and one considered high pressure positive expiratory pressure. Of the eight studies, six were single-treatment studies and in two, the treatment intervention was performed over two consecutive days (once daily in one, twice daily in the other). This enormous heterogeneity in the treatment interventions prevented any meta-analyses from being performed.Four studies, involving 28 participants, reported a higher amount of expectorated secretions during chest physiotherapy as compared to a control. One study, involving 18 participants, reported no significant differences in sputum weight. In five studies radioactive tracer clearance was used as an outcome variable. In three of these (28 participants) it was reported that chest physiotherapy, including coughing, increased radioactive tracer clearance as compared to the control period. One study (12 participants) reported increased radioactive tracer clearance associated with all interventions compared to control, although this was only reported to have reached significance for postural drainage with percussion and vibrations; and the remaining study (eight participants) reported no significant difference in radioactive tracer clearance between chest physiotherapy, without coughing, compared to the control period. Three studies, involving 42 participants reported no significant effect on pulmonary function variables following intervention; but one further study did report significant improvement in pulmonary function following the intervention in some of the treatment groups.AUTHORS' CONCLUSIONS: The results of this review show that airway clearance techniques have short-term effects in the terms of increasing mucus transport. No evidence was found on which to draw conclusions concerning the long-term effects.
LINK
In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
Objective: We determined the prevalences of hyperoxemia and excessive oxygen use, and the epidemiology, ventilation characteristics and outcomes associated with hyperoxemia in invasively ventilated patients with coronavirus disease 2019 (COVID–19). Methods: Post hoc analysis of a national, multicentre, observational study in 22 ICUs. Patients were classified in the first two days of invasive ventilation as ‘hyperoxemic’ or ‘normoxemic’. The co–primary endpoints were prevalence of hyperoxemia (PaO2 > 90 mmHg) and prevalence of excessive oxygen use (FiO2 ≥ 60% while PaO2 > 90 mmHg or SpO2 > 92%). Secondary endpoints included ventilator settings and ventilation parameters, duration of ventilation, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, and at day 28 and 90. We used propensity matching to control for observed confounding factors that may influence endpoints. Results: Of 851 COVID–19 patients, 225 (26.4%) were classified as hyperoxemic. Excessive oxygen use occurred in 385 (45.2%) patients. Acute respiratory distress syndrome (ARDS) severity was lowest in hyperoxemic patients. Hyperoxemic patients were ventilated with higher positive end–expiratory pressure (PEEP), while rescue therapies for hypoxemia were applied more often in normoxemic patients. Neither in the unmatched nor in the matched analysis were there differences between hyperoxemic and normoxemic patients with regard to any of the clinical outcomes. Conclusion: In this cohort of invasively ventilated COVID–19 patients, hyperoxemia occurred often and so did excessive oxygen use. The main differences between hyperoxemic and normoxemic patients were ARDS severity and use of PEEP. Clinical outcomes were not different between hyperoxemic and normoxemic patients.