Several studies have suggested that precision livestock farming (PLF) is a useful tool foranimal welfare management and assessment. Location, posture and movement of an individual are key elements in identifying the animal and recording its behaviour. Currently, multiple technologies are available for automated monitoring of the location of individual animals, ranging from Global Navigation Satellite Systems (GNSS) to ultra-wideband (UWB), RFID, wireless sensor networks (WSN) and even computer vision. These techniques and developments all yield potential to manage and assess animal welfare, but also have their constraints, such as range and accuracy. Combining sensors such as accelerometers with any location determining technique into a sensor fusion systemcan give more detailed information on the individual cow, achieving an even more reliable and accurate indication of animal welfare. We conclude that location systems are a promising approach to determining animal welfare, especially when applied in conjunction with additional sensors, but additional research focused on the use of technology in animal welfare monitoring is needed.
MULTIFILE
Background Several footwear design characteristics are known to have detrimental effects on the foot. However, one characteristic that has received relatively little attention is the point where the sole flexes in the sagittal plane. Several footwear assessment forms assume that this should ideally be located directly under the metarsophalangeal joints (MTPJs), but this has not been directly evaluated. The aim of this study was therefore to assess the influence on plantar loading of different locations of the shoe sole flexion point. Method Twenty-one asymptomatic females with normal foot posture participated. Standardised shoes were incised directly underneath the metatarsophalangeal joints, proximal to the MTPJs or underneath the midfoot. The participants walked in a randomised sequence of the three shoes whilst plantar loading patterns were obtained using the Pedar® in-shoe pressure measurement system. The foot was divided into nine anatomically important masks, and peak pressure (PP), contact time (CT) and pressure time integral (PTI) were determined. A ratio of PP and PTI between MTPJ2-3/MTPJ1 was also calculated. Results Wearing the shoe with the sole flexion point located proximal to the MTPJs resulted in increased PP under MTPJ 4–5 (6.2%) and decreased PP under the medial midfoot compared to the sub-MTPJ flexion point (−8.4%). Wearing the shoe with the sole flexion point located under the midfoot resulted in decreased PP, CT and PTI in the medial and lateral hindfoot (PP: −4.2% and −5.1%, CT: −3.4% and −6.6%, PTI: −6.9% and −5.7%) and medial midfoot (PP: −5.9% CT: −2.9% PTI: −12.2%) compared to the other two shoes. Conclusion The findings of this study indicate that the location of the sole flexion point of the shoe influences plantar loading patterns during gait. Specifically, shoes with a sole flexion point located under the midfoot significantly decrease the magnitude and duration of loading under the midfoot and hindfoot, which may be indicative of an earlier heel lift.
LINK
Recent textile innovations have significantly transformed both the material structures of fibers and fabrics as well as their sphere of use and applications.At the same time, new recycling concepts and methods to re--use textile waste are rapidly being developed and many new ways to make use of recycled and reclaimed fibers have already been found. In this paper, we describe how the development of a new textile, making use of recycled fibers, sparked the development of Textile Reflexes, a robotic textile that can change shape. This paper elaborates on the development of the new textile material, the multidisciplinary approach we take to advance it towards a robotic textile and our first endeavours to implement it in a health & wellbeing context. Textile Reflexes was applied in a vest that supports posture correction and training that was evaluated in a user study. In this way, the paper demonstrates a material and product design study that bridges disciplines and that links to both environmental and social change.doi: 10.21606/dma.2017.610This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/
MULTIFILE