New technologies or approaches are being widely developed and proposed to be deployed in real energy systems to improve desired objectives; however, supporting decision making processes to select best solutions in terms of performance and efficiently following cost-benefit analysis require some sort of scientific evidence based tools. These tools should be reliable, robust, and capable of demonstrating the behaviour and impact of newly developed devices or algorithms in different pre- defined scenarios. Therefore, new approaches and technologies need to be tested and verified using a safe laboratory test environment.This report is about the development and realisation of some major tools and reliable methods to calculate risks and opportunities for integrating of new energy resources into the European electricity grid. Hanze University Groningen and Politecnico di Torino worked together within the STORE&GO project sharing laboratories, knowledge, hardware facilities and researchers for the realisation of the characterisation and mathematical modelling of renewable resources. Needed to realize a stable and reliable environment for remote physical hardware in the loop simulations.For this realisation we started with the local characterisation of a PV-Field and a PEM electrolyser at Entrance Groningen by logging and measuring the electric behaviour and specific device parameters to integrate and convert these into working mathematical models of a PV-Field and electrolyser prosumer. After testing and evaluating these models by comparing the results with the real-time measurements, these test and modelling is also realised from the remote laboratory in Torino. To achieve dynamical physical hardware we also realised dynamic mathematical model(s) with real-time functionality to interact directly with the remote electrolyser. To connect both the laboratories with full duplex communication functionalities between physical hardware and models we have also realized a network which is able to share network resources on both local and remote sites.
Contribution to the conference: International Conference on New Pathways for Community Energy and Storage, 6-7 June 2019ABSTRACTThe community renewable energy is often seen as the way to address the societal challenge of energy transition. Many scholars foresee a key role for community energy in accelerating of the energy transition from fossil to renewable energy sources. For example, some authors investigated the transformative role of community renewable energy in the energy transition process (Seyfang and Smith, 2007; Seyfang and Haxeltine 2012; Seyfang et al. 2013; Seyfang et al. 2014; Smith et al. 2017; Martiskainen, 2017; Ruggiero et al. 2018; Hasanov and Zuidema, 2018; de Boer et al. 2018). Recognising the importance of community energy many scholars studied different internal and external conditions that contribute or hinder the success of local renewable energy initiatives (Walker et al. 2007; Bomberg and McEwen, 2012; Seyfang et al. 2013; Wirth, 2014; Hasanov and Zuidema, 2018; Ruggiero et al. 2018). One of such conditions contributing to the success of community energy initiatives is the capacity to adopt and utilize new technologies, for example, in the area of energy storage, which would increase flexibility and resilience of the communal energy supply systems.However, as noted by Ruggiero et al. (2018), the scholarship remains unclear on “how a very diverse and relatively small sector such as community energy could scale up and promote a change in the dominant way of energy production”. What is then the real transformative power of local renewable energy initiatives and whether community energy can offer an alternative to the existing energy system? This paper aims to answer these questions by confronting the critical review of theory with the recent practice of community energy in the Netherlands to build and scale up independent and self-sustaining renewable energy supply structures on the local and national scale and drafting perspectives on the possible role of community energy in the new energy system.