Background: Improved preferred gait speed in older adults is associated with increased survival rates. There are inconsistent findings in clinical trials regarding effects of exercise on preferred gait speed, and heterogeneity in interventions in the current reviews and meta-analyses. Objective: to determine the meta-effects of different types or combinations of exercise interventions from randomized controlled trials on improvement in preferred gait speed. Methods: Data sources: A literature search was performed; the following databases were searched for studies from 1990 up to 9 December 2013: PubMed, EMBASE, EBSCO (AMED, CINAHL, ERIC, Medline, PsycInfo, and SocINDEX), and the Cochrane Library. Study eligibility criteria: Randomized controlled trials of exercise interventions for older adults ≥ 65 years, that provided quantitative data (mean/SD) on preferred gait speed at baseline and post-intervention, as a primary or secondary outcome measure in the published article were included. Studies were excluded when the PEDro score was ≤4, or if participants were selected for a specific neurological or neurodegenerative disease, Chronic Obstructive Pulmonary Disease, cardiovascular disease, recent lower limb fractures, lower limb joint replacements, or severe cognitive impairments. The meta-effect is presented in Forest plots with 95 % confidence Study appraisal and synthesis methods: intervals and random weights assigned to each trial. Homogeneity and risk of publication bias were assessed. Results: Twenty-five studies were analysed in this meta-analysis. Data from six types or combinations of exercise interventions were pooled into sub-analyses. First, there is a significant positive meta-effect of resistance training progressed to 70-80 % of 1RM on preferred gait speed of 0.13 [CI 95 % 0.09-0.16] m/s. The difference between intervention- and control groups shows a substantial meaningful change (>0.1 m/s). Secondly, a significant positive meta-effect of interventions with a rhythmic component on preferred gait speed of 0.07 [CI 95 % 0.03-0.10] m/s was found. Thirdly, there is a small significant positive meta-effect of progressive resistance training, combined with balance-, and endurance training of 0.05 [CI 95 % 0.00-0.09] m/s. The other sub-analyses show non-significant small positive meta-affects. Conclusions: Progressive resistance training with high intensities, is the most effective exercise modality for improving preferred gait speed. Sufficient muscle strength seems an important condition for improving preferred gait speed. The addition of balance-, and/or endurance training does not contribute to the significant positive effects of progressive resistance training. A promising component is exercise with a rhythmic component. Keeping time to music or rhythm possibly trains higher cognitive functions that are important for gait. Limitations: The focus of the present meta-analysis was at avoiding as much heterogeneity in exercise interventions. However heterogeneity in the research populations could not be completely avoided, there are probably differences in health status within different studies.
BACKGROUND: Regaining walking ability is a key target in geriatric rehabilitation. This study evaluated the prevalence of walking ability at (pre-)admission and related clinical characteristics in a cohort of geriatric rehabilitation inpatients; in inpatients without walking ability, feasibility and effectiveness of progressive resistance exercise training (PRT) were assessed.METHODS: Inpatients within RESORT, an observational, longitudinal cohort of geriatric rehabilitation inpatients, were stratified in those with and without ability to walk independently (defined by Functional Ambulation Classification (FAC) score ≤ 2) at admission; further subdivision was performed by pre-admission walking ability. Clinical characteristics at admission, length of stay, and changes in physical and functional performance throughout admission were compared depending on (pre-)admission walking ability. Feasibility (relative number of PRT sessions given and dropout rate) and effectiveness [change in Short Physical Performance Battery, FAC, independence in (instrumental) activities of daily living (ADL/IADL)] of PRT (n = 11) in a subset of inpatients without ability to walk independently at admission (able to walk pre-admission) were investigated compared with usual care (n = 11) (LIFT-UP study).RESULTS: Out of 710 inpatients (median age 83.5 years; 58.0% female), 52.2% were not able to walk independently at admission, and 7.6% were not able to walk pre-admission. Inpatients who were not able to walk independently at admission, had a longer length of stay, higher prevalence of cognitive impairment and frailty and malnutrition risk scores, and a lower improvement in independence in (I)ADL compared with inpatients who were able to walk at both admission and pre-admission. In LIFT-UP, the relative median number of PRT sessions given compared with the protocol (twice per weekday) was 11 out of 44. There were no dropouts. PRT improved FAC (P = 0.028) and ADL (P = 0.034) compared with usual care.CONCLUSIONS: High prevalence of inpatients who are not able to walk independently and its negative impact on independence in (I)ADL during geriatric rehabilitation highlights the importance of tailored interventions such as PRT, which resulted in improvement in FAC and ADL.
Abstract Background: Patients with glioma often suffer from cognitive deficits. Physical exercise has been effective in ameliorating cognitive deficits in older adults and neurological patients. This pilot randomized controlled trial (RCT) explored the possible impact of an exercise intervention, designed to improve cognitive functioning in glioma patients, regarding cognitive test performance and patient-reported outcomes (PROs). Methods: Thirty-four clinically stable patients with World Health Organization grades II/III glioma were randomized to a home-based remotely coached exercise group or an active control group. Patients exercised 3 times per week for 20-45 minutes, with moderate to vigorous intensity, during 6 months. At baseline and immediate follow-up, cognitive performance and PROs were assessed with neuropsychological tests and questionnaires, respectively. Linear regression analyses were used to estimate effect sizes of potential between-group differences in cognitive performance and PROs at 6 months. Results: The exercise group (n = 21) had small- to medium-sized better follow-up scores than the control group (n = 11) on several measures of attention and information processing speed, verbal memory, and executive function, whereas the control group showed a slightly better score on a measure of sustained selective attention. The exercise group also demonstrated small- to medium-sized better outcomes on measures of self-reported cognitive symptoms, fatigue, sleep, mood, and mental health-related quality of life. Conclusions: This small exploratory RCT in glioma patients provides a proof of concept with respect to improvement of cognitive functioning and PROs after aerobic exercise, and warrants larger exercise trials in brain tumor patients.