The idea that technologies influence society—both positively and negatively—is not new. This is mainly the terrain of the philosophy and the ethics of technolo-gy research. Similarly, design research aims to help create new technologies in line with individual, social, and societal needs and values. Against this backdrop, it seems essential to expose relations between design and philosophy of tech-nology research, particularly from a methodological perspective. The main goal of this paper is to suggest a preliminary overview of methods and approaches that can inspire and inform interdisciplinary collaboration and, with that, sys-tematic engagement with ethics in design processes. Through interdisciplinary exchange, we propose a preliminary typology of ethics-informed methods and approaches based on two main dimensions, namely theory-grounded approaches to theoretically-flexible techniques and assessment to accompaniment. This mapping intends to help navigate the ethical qualities of selected methods from both disciplines, and it aims to create a platform for fruitful interdisciplinary conversations.
MULTIFILE
Background: The number of medical technologies used in home settings has increased substantially over the last 10-15 years. In order to manage their use and to guarantee quality and safety, data on usage trends and practical experiences are important. This paper presents a literature review on types, trends and experiences with the use of advanced medical technologies at home. Methods: The study focused on advanced medical technologies that are part of the technical nursing process and 'hands on' processes by nurses, excluding information technology such as domotica. The systematic review of literature was performed by searching the databases MEDLINE, Scopus and Cinahl. We included papers from 2000 to 2015 and selected articles containing empirical material. Results: The review identified 87 relevant articles, 62% was published in the period 2011-2015. Of the included studies, 45% considered devices for respiratory support, 39% devices for dialysis and 29% devices for oxygen therapy. Most research has been conducted on the topic 'user experiences' (36%), mainly regarding patients or informal caregivers. Results show that nurses have a key role in supporting patients and family caregivers in the process of homecare with advanced medical technologies and in providing information for, and as a member of multi-disciplinary teams. However, relatively low numbers of articles were found studying nurses perspective. Conclusions: Research on medical technologies used at home has increased considerably until 2015. Much is already known on topics, such as user experiences; safety, risks, incidents and complications; and design and technological development. We also identified a lack of research exploring the views of nurses with regard to medical technologies for homecare, such as user experiences of nurses with different technologies, training, instruction and education of nurses and human factors by nurses in risk management and patient safety.
De African Digital Rights Network (ADRN) heeft een nieuw rapport gepubliceerd waarin de toevoer en verspreiding van digitale surveillance technologie in Afrika in kaart is gebracht. Onderzoeker Anand Sheombar van het lectoraat Procesinnovatie & Informatiesystemen is betrokken bij het ADRN-collectief en heeft samen met de Engelse journalist Sebastian Klovig Skelton, door middel van desk research de aanvoerlijnen vanuit Westerse en Noordelijke landen geanalyseerd. De bevindingen zijn te lezen in dit Supply-side report hoofdstuk van het rapport. APA-bronvermelding: Klovig Skelton, S., & Sheombar, A. (2023). Mapping the supply of surveillance technologies to Africa Supply-side report. In T. Roberts (Ed.), Mapping the Supply of Surveillance Technologies to Africa: Case Studies from Nigeria, Ghana, Morocco, Malawi, and Zambia (pp. 136-167). Brighton, UK: Institute of Development Studies.
MULTIFILE
In the past decades, we have faced an increase in the digitization, digitalization, and digital transformation of our work and daily life. Breakthroughs of digital technologies in fields such as artificial intelligence, telecommunications, and data science bring solutions for large societal questions but also pose a new challenge: how to equip our (future)workforce with the necessary digital skills, knowledge, and mindset to respond to and drive digital transformation?Developing and supporting our human capital is paramount and failure to do so may leave us behind on individual (digital divide), organizational (economic disadvantages), and societal level (failure in addressing grand societal challenges). Digital transformation necessitates continuous learning approaches and scaffolding of interdisciplinary collaboration and innovation practices that match complex real-world problems. Research and industry have advocated for setting up learning communities as a space in which (future) professionals of different backgrounds can work, learn, and innovate together. However, insights into how and under which circumstances learning communities contribute to accelerated learning and innovation for digital transformation are lacking. In this project, we will study 13 existing and developing learning communities that work on challenges related to digital transformation to understand their working mechanisms. We will develop a wide variety of methods and tools to support learning communities and integrate these in a Learning Communities Incubator. These insights, methods and tools will result in more effective learning communities that will eventually (a) increase the potential of human capital to innovate and (b) accelerate the innovation for digital transformation
This PD project explores alternative approaches to audiovisual technologies in art and creative practices by reimagining and reinventing marginalized and decommodified devices through Media Archaeology, artistic experimentation, and hands-on technical reinvention. This research employs Media Archaeology to uncover “obsolete” yet artistically relevant technologies and hands-on technical reinvention to adapt these tools for contemporary creative practices. It seeks to develop experimental self-built devices that critically engage with media materiality, exploring alternative aesthetic possibilities through practice-based investigations into the cultural and historical dimensions of media technologies. These developments provide artists with new creative possibilities beyond mainstream commercial standardized tools and infrastructures. A key component of this project is collaborative innovation with artist-run analog film communities, such as Filmwerkplaats. By fostering knowledge exchange and artistic experimentation, this research ensures that reinvented tools remain relevant to both analog film communities and contemporary media art practices. The intended outcomes directly benefit two key groups: • Artist-run film labs gain sustainable methods for evolving their practices, reducing dependence on scarce, out-of-production equipment. • Digital-native artists are introduced to alternative methods for engaging with analog processes and media materiality, expanding their creative toolkit. This collaboration also strengthens art and design education by embedding alternative technological perspectives and research methodologies into curricula, providing students and practitioners with resourceful, sustainable approaches to working with technology. It advocates for a more diverse educational paradigm that incorporates media-technological history and critical reflection on the ideologies of linear technological progress. Ultimately, this research fosters critical discourse on media culture, challenges the dominance of corporate proprietary systems, and promotes innovation, redefining the relationship between creativity and technology.
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.