The “as eaten” method to measure the Total Dietary Fibre content and an in vitro fermentation with colon bacteria were successfully coupled to see if fibre fractions have a prebiotic effect. Similar growth pattern for modified starch, FOS and GOS were observed (Fig A). The qPCR results indicate a significant stimulation of the growth of gut bacteria by FOS and GOS and in lesser extent by the modified starch (Fig.C). Future experiments will compare the qPCR data with metagenomic analysis of in vitro and in vivo experiments.
DOCUMENT
ALIFE:The “as eaten” method to measure the Total Dietary Fibre content was implemented at the Hanze University of Applied Sciences (WP 4). The enzymatic treatment with the GtfB enzyme clearly resulted in an increased fibre content of starch from 1.6% to approx. 20% (fig A). When using this modified starch (“as eaten” treated) in an incubation with colon bacteria we see a similar pattern as when using FOS and GOS (fig B). The qPCR results indicate a significant stimulation of the growth of gut bacteria by the GtfB modified starch, as shown by the relative increase of Bacteroides and to a lesser extent Lactobacilli (fig.C). The prebiotic effect remains to be evaluated.
DOCUMENT
Analysis of the bacterial flora is important for the characterization of fermentation events. They help the further validation of the “prebiotic index“ as fast and cost-effective screening of prebotic action within individuals or selected populations.
DOCUMENT
From teh UU repository: "Background: Oral immunotherapy (OIT) is a promising therapeutic approach to treat food allergic patients. However, there are some concerns regarding its safety and long-term efficacy. The use of non-digestible oligosaccharides might improve OIT efficacy since they are known to directly modulate intestinal epithelial and immune cells in addition to acting as prebiotics. Aim: To investigate whether a diet supplemented with plant-derived fructo-oligosaccharides (FOS) supports the efficacy of OIT in a murine cow's milk allergy model and to elucidate the potential mechanisms involved. Methods: After oral sensitization to the cow's milk protein whey, female C3H/HeOuJ mice were fed either a control diet or a diet supplemented with FOS (1% w/w) and received OIT (10 mg whey) 5 days a week for 3 weeks by gavage. Intradermal (i.d.) and intragastric (i.g.) challenges were performed to measure acute allergic symptoms and mast cell degranulation. Blood and organs were collected to measure antibody levels and T cell and dendritic cell populations. Spleen-derived T cell fractions (whole spleen-and CD25-depleted) were transferred to naive recipient mice to confirm the involvement of regulatory T cells (Tregs) in allergy protection induced by OIT + FOS. Results: OIT + FOS decreased acute allergic symptoms and mast cell degranulation upon challenge and prevented the challenge-induced increase in whey-specific IgE as observed in sensitized mice. Early induction of Tregs in the mesenteric lymph nodes (MLN) of OIT + FOS mice coincided with reduced T cell responsiveness in splenocyte cultures. CD25 depletion in OIT + FOS-derived splenocyte suspensions prior to transfer abolished protection against signs of anaphylaxis in recipients. OIT + FOS increased serum galectin-9 levels. No differences in short-chain fatty acid (SCFA) levels in the cecum were observed between the treatment groups. Concisely, FOS supplementation significantly improved OIT in the acute allergic skin response, %Foxp3+ Tregs and %LAP+ Th3 cells in MLN, and serum galectin-9 levels. Conclusion: FOS supplementation improved the efficacy of OIT in cow's milk allergic mice. Increased levels of Tregs in the MLN and abolished protection against signs of anaphylaxis upon transfer of CD25-depleted cell fractions, suggest a role for Foxp3+ Tregs in the protective effect of OIT + FOS. "
LINK
ALIFE The “all-in-one” method to measure the Total Dietary Fibre content was implemented at the Hanze University of Applies Sciences. Wholemeal bread and crackers showed the expected % of TDF (approx. 6 and10 %, respectively). Enzymatic treatment with a novel starch-modifying enzyme clearly resulted in an increased TDF content of starch from 1.6% to approx. 27%. Due the limited amount of sample material and low ash-content of starch, ash values were abberant. In the near future, on-going research will reveal whether the MWSDF+IDF of these enzymatically modified starches also possess any prebiotic activity and stimulate growth of probiotic bacteria.
DOCUMENT
Dietary fibers are at the forefront of nutritional research because they positively contribute to human health. Much of our processed foods contain, however, only small quantities of dietary fiber, because their addition often negatively affects the taste, texture, and mouth feel. There is thus an urge for novel types of dietary fibers that do not cause unwanted sensory effects when applied as ingredient, while still positively contributing to the health of consumers. Here, we report the generation and characterization of a novel type of soluble dietary fiber with prebiotic properties, derived from starch via enzymatic modification,yielding isomalto/malto-polysaccharides (IMMPs), which consist of linear (α1 → 6)-glucan chains attached to the nonreducing ends of starch fragments. The applied Lactobacillus reuteri 121 GTFB 4,6-α-lucanotransferase enzyme synthesizes these molecules by transferring the nonreducing glucose moiety of an (α1 → 4)-glucan chain to the nonreducing end of another (α1 → 4)-α-glucan chain, forming an (α1 → 6)-glycosidic linkage. Once elongated in this way, the molecule becomes a better acceptor substrate and is then further elongated with (α1 → 6)-linked glucose residues in a linear way. Comparison of 30 starches, maltodextrins, and α-glucans of various botanical sources, demonstrated that substrates with long and linear (α1 → 4)- glucan chains deliver products with the highest percentage of (α1 → 6) linkages, up to 92%. In vitro experiments, serving as model of the digestive power of the gastrointestinal tract, revealed that the IMMPs, or more precisely the IMMP fraction rich in (α1 → 6) linkages, will largely pass the small intestine undigested and therefore end up in the large intestine. IMMPs are a novel type of dietary fiber that may have health promoting activity.
DOCUMENT
Inulin is a soluble dietary fibre, also classified as a prebiotic, extracted from chicory roots. The present study aimed to determine the effect of consumption of native chicory inulin on the stool frequency of middle-aged to older adults (40–75 years old) with uncomfortably but not clinically relevant low stool frequency, specified as two to four days without bowel movements per week. Two randomised, double blind, placebo-controlled crossover trials were conducted using similar protocols in differing populations. Trial A was conducted in Amsterdam, The Netherlands and subsequently Trial B was conducted in Newcastle, United Kingdom. Both trials involved supplementation for 5 weeks with 10 g per day of inulin or placebo, a washout period of 2 weeks, and then crossed over to receive the other treatment. In Trial B, faecal gut microbiota composition was assessed using 16S rRNA gene sequencing. In Trial A, which 10 volunteers completed, the stool frequency was significantly increased to an average 4.9 ± 0.23 (SEM) times per week during inulin periods versus 3.6 ± 0.25 in the periods with placebo (p = 0.01). In contrast, in Trial B which 20 volunteers completed, there was no significant effect of the inulin on stool frequency (7.5 ± 2.1 times per week with inulin, 8.1 ± 3.0 with placebo, p = 0.35). However, many subjects in Trial B had a stool frequency >5 per week also for the placebo period, in breach of the inclusion criteria. Combining the data of 16 low stool frequency subjects from Trials A and B showed a significant effect of inulin to increase stool frequency from 4.1 to 5.0 per week (p = 0.032). Regarding secondary outcomes, stool consistency was significantly softer with inulin treatment compared to placebo periods, it increased 0.29 on the Bristol stool scale (p = 0.008) when data from all subjects of Trials A and B were combined. No other differences in bowel habit parameters due to inulin consumption were significant. None of the differences in specific bacterial abundance, alpha or beta diversity were significant, however the trends were in directions consistent with published studies on other types of inulin. We conclude that 10 g per day of native chicory inulin can increase stool frequency in subjects with low stool frequency.
MULTIFILE
Plant Breeders Rights were granted to Vandinter Semo BV on 29th December 2020 for the Andean Lupin variety COTOPAXI. COTOPAXI is result of cooperation between Vandinter Semo, Hanze University of Applied Sciences and the H2020 BBI-JU European research project LIBBIO. Andean Lupin (Lupinus mutabilis) has its origin in South America and is one of the four lupin species for human consumption. Andean Lupin is a sustainable alternative for soybean because of its comparable oil and protein content and its contribution to biodiversity and soil improvement. COTOPAXI is the first Andean Lupin variety in Europe that has been granted with Plant Breeder Rights. Andean lupin oil has excellent fatty acid composition and is therefore suited for food applications like margarines and mayonnaises and also for cosmetic applications, especially hair care products, lipsticks and nourishing anti-aging skin care products. Andean Lupin bean is also rich in proteins, oligosaccharides, alkaloids and bioactive components. Andean lupin proteins can be used as functional food ingredients and as animal feed. Oligosaccharides have functional food applications because of their fermentative (prebiotic) potential in the human large intestine. Alkaloids are of interest because of their medical potential as anti-cancer medicine and as biodegradable natural crop protection agents. Andean lupin bioactives are suited as ingredients in anti-aging cosmetics and in functional foods. Andean lupin contributes to the plant-based protein transition and to EU policy becoming more independent from foreign protein imports. Rob van Haren, Professor Transition Bioeconomy at Hanze University of Applied Sciences, says: “Andean Lupin is one of the “lost crops of the Incas” like quinoa and chia. Andean lupin grows in the same agro-ecozone as potato and has therefore a great areal potential. Andean lupin oil and protein contents are comparable with soybean and hence its business case has the same potential as well.” Rob van Haren together with other partners initiated in 2015 the H2020 research project LIBBIO for developing the Andean lupin supply chain and its biorefinery processing. This was made possible by an Andean lupin pre-breeding collection established by Kiemkracht, the innovation alliance from Product Board Arable Products and the Innovation Network of the Ministry of Agriculture. Bert-Jan van Dinter, director Vandinter Semo, says: “We have been active in plant breeding for more than a century, our company started in 1914. Our focus is to breed new varieties for soil improvement and soil health. We also breed for double-target crops for yield and soil improvement. We started our cooperation in 2008 first with Kiemkracht and later with Hanze UAS within the H2020 project LIBBIO. Obtaining Plant Breeder Rights in Europe within 5 years of research is unique. COTOPAXI is the first variety emerging from our new breeding program. In coming years we intend to breed for properties like sweetness (low alkaloids), earliness and crop yield”. The Andean lupin COTOPAXI contributes to farmer income, sustainable and circular agriculture, profitable processing and biorefinery and sustainable natural products for European consumers.
MULTIFILE