This chapter considers the use of haptics for learning fundamental rhythm skills, including skills that depend on multi-limb coordination. Different sensory modalities have different strengths and weaknesses for the development of skills related to rhythm. For example, vision has low temporal resolution and performs poorly for tracking rhythms in real time, whereas hearing is highly accurate. However, in the case of multi-limbed rhythms, neither hearing nor sight is particularly well suited to communicating exactly which limb does what and when, or how the limbs coordinate. By contrast, haptics can work especially well in this area, by applying haptic signals independently to each limb. We review relevant theories, including embodied interaction and biological entrainment. We present a range of applications of the Haptic Bracelets, which are computer-controlled wireless vibrotactile devices, one attached to each wrist and ankle. Haptic pulses are used to guide users in playing rhythmic patterns that require multi-limb coordination. One immediate aim of the system is to support the development of practical rhythm skills and multi-limb coordination. A longer-term goal is to aid the development of a wider range of fundamental rhythm skills including recognising, identifying, memorising, retaining, analysing, reproducing, coordinating, modifying and creating rhythms—particularly multi-stream (i.e. polyphonic) rhythmic sequences. Empirical results are presented. We reflect on related work and discuss design issues for using haptics to support rhythm skills. Skills of this kind are essential not just to drummers and percussionists but also to keyboards’ players and more generally to all musicians who need a firm grasp of rhythm.
The importance of professional skills in future engineering jobs is beyond discussion. Increasing numbers of universities have integrated training for such skills in their engineering curricula to prepare students to become highly qualified employees. HU University of Applied Sciences Utrecht also implemented professional skills training in the IT Bachelor program to help our students develop towards successful and highly demanded IT engineers. However, these courses consistently score low in our student satisfaction surveys. To find the cause of this negative evaluation, we previously studied the motivation, attitude and anxiety of IT students towards learning soft, or professional, skills. This former quantitative study indicates that our IT students tend to have a positive motivation and attitude toward learning professional skills, while ’anxiety’ in learning professional skills increases from the first to the third year. In this qualitative study, we try to find causes for the increasing anxiety among IT students. We interviewed six third and fourth year IT students and after analysing these interviews we found that these students have experienced the need for professional skills during their internship. Besides, they emphasize the need of obtaining these skills for future employment. From the analysis of the interviews, it also appears that IT students rather felt difficulty in obtaining communication skills then anxiety. A possible cause for this difficulty mentioned by students was the character of students and the influence of the teacher. To overcome this difficulty obtaining communication skills, students suggested that training skills in an authentic engineering situation is more effective than doing exercises with simulated cases. However, the results of this study did not yield a conclusive insight in the cause of increased anxiety, hence further research is needed.
from the article: "While previous studies have stressed the importance of feedback delivered by experts, it is unclear whether students' oral presentation competence can be fostered through innovative technology for delivering feedback. This experimental study examined the effectiveness of a virtual reality-based task, in which first-year undergraduate students practiced their presentation in a virtual environment and received feedback produced by the system, on their presentation competence components (i.e. cognition, behaviour and attitudes towards presenting). The effects were compared with a control condition, which was a face-to-face presentation task with expert feedback. The students’ performance was measured using pre- and post-test multiple-choice tests, validated rubrics, and self-evaluation instruments. Results revealed significant improvements from pre-test to post-test in all three presentation competence components, without a difference between the conditions. Furthermore, the self-evaluation tests showed that students who presented in virtual reality were appreciative of the detailed and analytical feedback they received. Because of sample size limitations, the effects found could not be generalised. Therefore, future research on a larger sample is needed to examine population effects. Follow-up studies should focus on the extent to which virtual reality-based tasks can encourage self-regulation skills for the effective and efficient integration of these tasks in presentation courses. "
LINK
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Het Hanze Innovation Traineeship Pilot project is geïnitieerd op de Hanzehogeschool Groningen door drie onderzoeksgroepen (lectoraten) die zijn ingebed in het Marian van Os Centre of Expertise Ondernemen (CoEO). De trainees worden gecoacht in een Community of Learners en begeleid door een diverse groep van onderzoekers van de volgende onderzoeksgroepen van de Hanzehogeschool Groningen: (1) International Business, (2) Marketing/Marktgericht Ondernemen en (3) User-Centered Design. Het doel van het programma is om regionale MKBs in Noord-Nederland te ondersteunen om duurzaam te innoveren met de hulp en ondersteuning van trainees en onderzoekers van de drie onderzoeksgroepen. De trainees worden begeleid bij het ontwikkelen en implementeren van een door onderzoek ondersteunde innovatie tijdens een afstudeerproject en een 12-maanden durende traineeship bij het bedrijf. Bij de start van het programma ondergaan de MKBs een innovatie-gezondheids-check die wordt herhaald nadat de traineeship is afgerond. Over het algemeen zouden de bedrijven hun bedrijfsprestaties en innovatiecapaciteit moeten kunnen verbeteren door middel van het programma. Verder zal de onderzoekssamenwerking tussen de onderzoeksgroepen van de Hanzehogeschool en de MKBs leiden tot een beter inzicht in innovatiebarrières en succesfactoren. De opgedane kennis over regionale MKB-innovatie zal in alle sectoren en industrieën worden geprojecteerd. De uiteindelijke projectresultaten zullen dienen voor het besluitvormingsproces van toekomstige innovatie traineeship programma's
The key goal was to further develop, secure and disseminate knowledge and concepts concerning the role of high realism in Virtual Reality. It followed the Digital Media Concept professorship to create and examine the effects of high quality worlds and characters in VR. Key focus was on the effect of high versus low realism in (existing and non-existing) digital environments as well as digital characters and avatars (digital representations of human users) and embodied agents (digital representations of computer programs that have been designed to interact with, or on behalf of, a human). This means on the one hand getting better equipment and skills to digitize and create high realistic avatars in VR. And on the other hand this means that a better understanding of the concept of realism and quality is needed. This encompasses a whole range of terms that varies from realistic resemblance, to high fidelity appearance and (real-time interactive and authentic) behaviour based on high AI programming. Research showed that very important is congruency in realism between elements within a VR world. Furthermore it showed that high realism is not always needed to stimulate ‘real’ (VR) behaviour. High immersive experiences and impulse behaviour also functions in virtual environments that have lower levels of realism. Studies have been conducted within the field of health, entertainment, advertising, architecture and journalism. An example is the VR game Descend, see link (used to examine the effect of realism through resemblance).Partners: Radboud University, Enversed, Stanford University, University of Oregon, Cornell University, several companies