In this paper, we present a framework for gamified motor learning through the use of a serious game and high-fidelity motion capture sensors. Our implementation features an Inertial Measurement Unit and a set of Force Plates in order to obtain real-time, high-frequency measurements of patients' core movements and centre of pressure displacement during physical rehabilitation sessions. The aforementioned signals enable two mechanisms, namely a) a game avatar controlled through patient motor skills and b) a rich data stream for post-game motor performance analysis. Our main contribution is a fine-grained processing pipeline for sensor signals, enabling the extraction of a reliable and accurate mapping between patient motor movements, in-game avatar controls and overall motor performance. Moreover, we discuss the potential of this framework towards the implementation of personalised therapeutic sessions and present a pilot study conducted in that direction.
LINK
Abstract geschreven door R.J. Dijkink (Saxion), J.C. Lötters (Universiteit van Twente & Bronkhorst High-Tech BV), B.I. van den Berg (Medical Spectrum Twente) en C.A.J. Damen (Saxion). Initial investigations into the use of a MEMS based multi-parameter sensor for the characterization of medicine mixtures are presented. The current results show good results for density and mediocre results for heat capacity. Viscosity measurements have not yet produced any usable results. However there are clear flaws in the setup which could be the cause of this and which will no
MULTIFILE
From Springer description: "We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials platform, namely, nanowires, enables us to fabricate state-of-the-art components at reduced volume and show chemical sensing within the available energy budget. We demonstrate a photovoltaic mini-module made of silicon nanowire solar cells, each of 0.5 mm2 area, which delivers a power of 260 μW and an open circuit voltage of 2 V at one sun illumination. Using nanowire platforms two sensing applications are presented. Combining functionalised suspended Si nanowires with a novel microfluidic fluid delivery system, fully integrated microfluidic–sensor devices are examined as sensors for streptavidin and pH, whereas, using a microchip modified with Pd nanowires provides a power efficient and fast early hydrogen gas detection method. Finally, an ultra-low power, efficient solar energy harvesting and sensing microsystem augmented with a 6 mAh rechargeable battery allows for less than 20 μW power consumption and 425 h sensor operation even without energy harvesting."
LINK
Ongeveer één op de vijf vrouwen die borstkanker overleven, ontwikkelen (lymf)oedeem. Oedeem is een ophoping van vocht in een lichaamsdeel en kan zeer ingrijpende gevolgen hebben voor het dagelijks leven. Behandelingen van oedeem worden uitgevoerd door bijvoorbeeld huid -en oedeemtherapeuten, (mammacare)verpleegkundigen, fysiotherapeuten en bandagisten. Vaak bestaan deze behandelingen uit een combinatie van manuele lymfedrainage (massagetechniek), lymfetaping en compressietherapie. De behandelingen van odeem zijn voor patiënten zeer pijnlijk, langdurig, intensief en kostbaar. Tevens is het geven van massagetechnieken voor fysiotherapeuten en oedeemtherapeuten lichamelijk zeer zwaar, wat resulteert in eerder ziekteverzuim en hogere zorgkosten. Daarnaast zijn deze behandelingen vooral gericht op armen en benen, en niet op de borst. Speciale compressie bh’s of inleg-pads die in de markt verkrijgbaar zijn werken onvoldoende of zijn zo volumineus dat dagelijks gebruik eigenlijk onmogelijk is. De focus van dit KIEM project ligt op het ontwikkelen van een innovatieve bh die oedeem na borstkanker kan beperken en/of voorkomen. De specifieke samenwerking tussen Bratelle, ISKO, Vechtstreek Fysiotherapie, Witte Vlinder Fysiotherapie en de lectoraten Verpleegkunde en Sustainable & Functional Textiles biedt nieuwe mogelijkheden en inzichten. Dit project kan een doorbraak betekenen voor innovatieve textielmaterialen met medische toepassingen, specifiek oedeem. Door gebruik te maken van hightech apparatuur op Saxion, kunnen nieuwe concepten of materialen ontwikkeld worden, die ‘op-schaalbaar’ zijn. Ook kunnen ontwikkelingen van speciale materialen in combinatie met confectietechnieken, tot nieuwe inzichten leiden. Daarnaast zetten we een onderzoeksplan op gericht op het meten van de werking van de bh, waarbij de rol van verschillende zorgprofessionals essentieel is. Tevens is het streven om het consortium verder uit te breiden met praktijkprofessionals en leveranciers van textielmaterialen.
MSEs have encountered limitations while pushing the limits of catheter tip sensors performance. The limitations summarized: - sensors are not immune to electrical signal noise, cross talk, and EM fields; - sensors are not immune to high magnetic fields, i.e. not suitable for MR imaging; - extending the amount of sensors on the catheter tip is limited due to cluttering of wires. A fundamentally different approach using integrated optics is chosen for developing a new generation catheter sensors. The complexity of the design and production problems represents a knowledge gap, that can be bridged in the proposed consortium. This project consists of four work packages, total duration two years, subdivided into four phases. A crucial deliverable of the project is presented at the end of phase IV (WP4), namely a demonstrator integrating pressure and temperature sensors (obtained from WP1) with a newly designed readout system. This system is modularly extendable for future catheter tip sensors. In WP1, pressure- and temperature sensors are developed using two design approaches. In WP2 the influence of downscaling an ultrasound MZI device is explored and the microfabrication process parameters are studied. An additional goal of WP2 is to find the most suitable method for measuring lactate concentration. Among the deliverables five manuscripts: manuscript 1 includes simulations and measurements of the developed pressure and temperature sensors, manuscript 2 answers the question: can a grated fiber be used for measuring pressure and temperature on a tip? Manuscript 3 answers the question: which method is most suitable for measuring lactate concentration on a tip? Manuscript 4 answers the question: does a US intensity detector fit on a catheter tip while obeying the LoR? Manuscript 5 describes the performance of the demonstrator (Phase IV), i.e. integration of T/P sensing with a modular read out system.
In Europe nearly 10% of the population suffers from diabetes and almost 1% from Rheumatoid Arthritis which can lead to serious problems with mobility and active participation, especially in the ageing population. Pedorthists deliver personalised designed and manufactured orthopaedic footwear or insoles for these patients. However, despite their often laborious efforts upfront, the industry has very little means to quantify how successful the fitting and function of a shoe is. They have to rely on subjective, qualitative measures such as client satisfaction and diminishing of complaints. Although valuable, the need for objective quantitative data in this field is growing. Foot plantar pressure and shear forces are considered major indicators of potential foot problems. Devices to measure plantar pressure slowly gain terrain as providers of objective quantitative data to guide orthotic design and manufacturing. For shear forces however, measuring devices are not yet commercial available. Although shear forces are considered as a major contributor to ulcer formation in diabetic feet, their exact role still requires elucidation and quantification. This project aims to develop a prototype of an in-shoe wearable device that measures both shear forces and pressure using state-of-the-art developments in sensor technologies, smart textiles and wireless data transfer. The collaboration of pedorthists’ small and medium-sized enterprises (SME)’s with medical device engineering companies, knowledge institutes,technical universities and universities of applied sciences in this project will bring together the different fields of expertise required to create an innovative device. It is expected that the tool will be beneficial to improve the quality of pedorthists’ services and potentially reduce health insurance costs. Furthermore, it can be used in new shear forces research and open new business potential. However, the eventual aim is to improve patient care and help maintain personal mobility and participation in society.