Patients with coronary artery disease (CAD) are more sedentary compared with the general population, but contemporary cardiac rehabilitation (CR) programmes do not specifically target sedentary behaviour (SB). We developed a 12-week, hybrid (centre-based+home-based) Sedentary behaviour IntervenTion as a personaLisEd Secondary prevention Strategy (SIT LESS). The SIT LESS programme is tailored to the needs of patients with CAD, using evidence-based behavioural change methods and an activity tracker connected to an online dashboard to enable self-monitoring and remote coaching. Following the intervention mapping principles, we first identified determinants of SB from literature to adapt theory-based methods and practical applications to target SB and then evaluated the intervention in advisory board meetings with patients and nurse specialists. This resulted in four core components of SIT LESS: (1) patient education, (2) goal setting, (3) motivational interviewing with coping planning, and (4) (tele)monitoring using a pocket-worn activity tracker connected to a smartphone application and providing vibrotactile feedback after prolonged sedentary bouts. We hypothesise that adding SIT LESS to contemporary CR will reduce SB in patients with CAD to a greater extent compared with usual care. Therefore, 212 patients with CAD will be recruited from two Dutch hospitals and randomised to CR (control) or CR+SIT LESS (intervention). Patients will be assessed prior to, immediately after and 3 months after CR. The primary comparison relates to the pre-CR versus post-CR difference in SB (objectively assessed in min/day) between the control and intervention groups. Secondary outcomes include between-group differences in SB characteristics (eg, number of sedentary bouts); change in SB 3 months after CR; changes in light-intensity and moderate-to-vigorous-intensity physical activity; quality of life; and patients’ competencies for self-management. Outcomes of the SIT LESS randomised clinical trial will provide novel insight into the effectiveness of a structured, hybrid and personalised behaviour change intervention to attenuate SB in patients with CAD participating in CR.
MULTIFILE
AbstractThis study assessed the efficacy of a co-designed, school-based intervention meant to promote physical activityand fitness among Dutch prevocational secondary students. In a two-year clustered randomized controlled trial,students’ physical activity and fitness was measured by indirect and direct methods. In the intervention group,we used the triple-I procedure, a participatory action research method, to co-design the intervention together withthe students and schools. This procedure involved focus group discussions by interviewing and imagingtechniques, followed by a co-design process to align the intervention content and implementation processes withstudents’ preferences. The study involved 22 Dutch schools, with a total of 2685 13-to-14-year-old prevocationalsecondary students. Schools were randomly assigned to either intervention (11 schools, 1446 students) or controlgroup (11 schools, 1239 students).There were no significant intervention differences between students’ overallphysical activity behavior on intervention versus control schools. However, with regards to various specificphysical fitness indicators, such as the long jump, handgrip strength, shuttle run test, and the sum of skinfolds,intervention school students performed significantly better than the control group students. Furthermore, whentaking into account student participation, i.e. the success of the co-design process, schools with higher levels ofstudent participation showed higher shuttle run scores. However, such graded effects were not similarly apparentwith regards to students’ physical fitness indicators. This study showed that co-designing a comprehensivephysical activity intervention on numerous Dutch high schools via the Triple-I Interactive Method was feasible.Moreover, results showed that certain aspects of physical fitness were improved after two years of intervention,although taken together with the lack of effects on physical activity, results were mixed.
Background: Many intervention development projects fail to bridge the gap from basic research to clinical practice. Instead of theory-based approaches to intervention development, co-design prioritizes the end users' perspective as well as continuous collaboration between stakeholders, designers, and researchers throughout the project. This alternative approach to the development of interventions is expected to promote the adaptation to existing treatment activities and to be responsive to the requirements of end users. Objective: The first objective was to provide an overview of all activities that were employed during the course of a research project to develop a relapse prevention intervention for interdisciplinary pain treatment programs. The second objective was to examine how co-design may contribute to stakeholder involvement, generation of relevant insights and ideas, and incorporation of stakeholder input into the intervention design. Methods: We performed an embedded single case study and used the double diamond model to describe the process of intervention development. Using all available data sources, we also performed deductive content analysis to reflect on this process. Results: By critically reviewing the value and function of a co-design project with respect to idea generation, stakeholder involvement, and incorporation of stakeholder input into the intervention design, we demonstrated how co-design shaped the transition from ideas, via concepts, to a prototype for a relapse prevention intervention. Conclusions: Structural use of co-design throughout the project resulted in many different participating stakeholders and stimulating design activities. As a consequence, the majority of the components of the final prototype can be traced back to the information that stakeholders provided during the project. Although this illustrates how co-design facilitates the integration of contextual information into the intervention design, further experimental testing is required to evaluate to what extent this approach ultimately leads to improved usability as well as patient outcomes in the context of clinical practice.