This paper discusses the potential application of procedural content generation to a game about economical crises, intended to teach a large general audience about how banks function within a market-guided economy, and the financial risks and moral dilemmas that are involved. Procedurally generating content for abstract and complex notions such as inflation, market crashes, and market flux is different from generating spatial maps or physical assets in a game, and poses several design challenges. Instead of generating these kinds of phenomena and other macro-economic effects directly, the designers aim to let them emerge from automatically generated game mechanics. The game mechanics we propose include generic business models that can be parameterized to model the behavior of companies in the game, while the player controls the actions of a bank. What makes generating these game mechanics particularly challenging is the interaction between phenomena at different levels of abstraction. Therefore, relevant economic concepts are discussed in terms of design challenges, and how they could be modeled as emergent properties using generative methods.
A level designer typically creates the levels of a game to cater for a certain set of objectives, or mission. But in procedural content generation, it is common to treat the creation of missions and the generation of levels as two separate concerns. This often leads to generic levels that allow for various missions. However, this also creates a generic impression for the player, because the potential for synergy between the objectives and the level is not utilised. Following up on the mission-space generation concept, as described by Dormans, we explore the possibilities of procedurally generating a level from a designer-made mission. We use a generative grammar to transform a mission into a level in a mixed-initiative design setting. We provide two case studies, dungeon levels for a rogue-like game, and platformer levels for a metroidvania game. The generators differ in the way they use the mission to generate the space, but are created with the same tool for content generation based on model transformations. We discuss the differences between the two generation processes and compare it with a parameterized approach.
LINK
ConceptThe goal of the worksop/tutorial is to introduce participants to the fundamentals of Procedural Content Generation (PCG) based on generative grammars, have them experience an example of such a system first-hand, and discuss the potential of this approach for various areas of procedural content generation for games. The principles and examples are based on Ludoscope, a software tool developed at the HvA by Dr. Joris Dormans, e.a.Duration: 2 hoursOverviewWe will use the first 30 minutes to explain the basics of how to use generative grammars to generate levels. The principles of these grammars and model transformations will be demonstrated by means of the level generation system of Spelunky, which we have modeled in Ludoscope.Spelunky focuses solely on the generation of geometry, but grammar-based systems can also be used to transform more abstract concepts of level design into level geometry. In the next hour, the participants will be able to get some hands-on experience with Ludoscope. The assignment will be to generate a Mario-like level based on specific requirements, adapted to the interests of workshop participants.Finally, we are interested in the participants’ evaluation of this approach to PCG. We will use the last 20 minutes to discuss alternative techniques, and possible applications to other areas of PCG, like asset creation, scripting and game generation.Workshop participants are asked to bring a (PC) laptop to work on during the workshop, and are encouraged to work in pairs.
LINK
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
A research theme examining story structure (linear, branching, and procedural), narrative design, and writing for video games.
Despite the vast potential drone technologies have, their integration to our society has been slow due to restricting regulations. Recently, a new EU-wide drone regulation has been published. This regulation is intended to harmonize the non-uniform national regulations across EU. It also relaxes the existing restrictions and allows previously prohibited operations that have significant socio-economic and technological impacts, such as autonomous BVLOS flights even over populated areas. However, there are challenges with regard to specifics and accessibilities of the required technological & procedural prerequisite this regulation entails. There is, therefore, a demand from SMEs for practical knowledge on technological and procedural aspects of a safe, robust and BVLOS operable security drone with short and long-term autonomy that fully complies to the new drone regulation. The required drone technologies include robust obstacle avoidance, intelligence failsafe for robust, reliable and safe autonomous flights with long-term autonomy capabilities. The operational procedures include SORA, pre/in/post-flight analysis and ROC/LUC permissions. In this project, these two aspects will be addressed in an integral manner. The consortium recognizes that developing such advanced security drone in two years is ambitious. Yet, they firmly believe that it is realizable due to the complementary expertise of the consortium and their commitment for the success of the project. With this project, the knowledge institutes will enrich their practical knowledge in the area of autonomous and BVLOS capable drones, operational procedures, risk analysis and mitigations. The partner companies will be equipped with the necessary technologies, operation permission and knowledge on optimal operation procedures to be at the forefront and benefit from the exploding market opportunities when the new regulation is fully implemented in July 2022. Moreover, this project will also make a demonstrable contribution to the renewal of higher professional education.