Report of the project 'FAIR: geen woorden maar data' about the FAIRification of research data (in Dutch). It describes the proof of concept for implementation of the FAIR principles. The implementation is based on the resource description framework (RDF) and semantic knowledge representations using ontologies.
Introduction: Depression can be a serious problem in young adult students. There is a need to implement and monitor prevention interventions for these students. Emotion-regulating improvisational music therapy (EIMT) was developed to prevent depression. The purpose of this study was to evaluate the feasibility of EIMT for use in practice for young adult students with depressive symptoms in a university context. Method: A process evaluation was conducted embedded in a larger research project. Eleven students, three music therapists and five referrers were interviewed. The music therapists also completed evaluation forms. Data were collected concerning client attendance, treatment integrity, musical components used to synchronise, and experiences with EIMT and referral. Results: Client attendance (90%) and treatment integrity were evaluated to be sufficient (therapist adherence 83%; competence 84%). The music therapists used mostly rhythm to synchronise (38 of 99 times). The students and music therapists reported that EIMT and its elements evoked changes in all emotion regulation components. The students reported that synchronisation elicited meaningful experiences of expressing joy, feeling heard, feeling joy and bodily responses of relaxation. The music therapists found the manual useful for applying EIMT. The student counsellors experienced EIMT as an appropriate way to support students due to its preventive character. Discussion: EIMT appears to be a feasible means of evoking changes in emotion regulation components in young adult students with depressive symptoms in a university context. More studies are needed to create a more nuanced and evidence-based understanding of the feasibility of EIMT, processes of change and treatment integrity.
AIM: To systematically review the available literature on the diagnostic accuracy of questionnaires and measurement instruments for headaches associated with musculoskeletal symptoms.DESIGN: Articles were eligible for inclusion when the diagnostic accuracy (sensitivity/specificity) was established for measurement instruments for headaches associated with musculoskeletal symptoms in an adult population. The databases searched were PubMed (1966-2018), Cochrane (1898-2018) and Cinahl (1988-2018). Methodological quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) and COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist for criterion validity. When possible, a meta-analysis was performed. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations were applied to establish the level of evidence per measurement instrument.RESULTS: From 3450 articles identified, 31 articles were included in this review. Eleven measurement instruments for migraine were identified, of which the ID-Migraine is recommended with a moderate level of evidence and a pooled sensitivity of 0.87 (95% CI: 0.85-0.89) and specificity of 0.75 (95% CI: 0.72-0.78). Six measurement instruments examined both migraine and tension-type headache and only the Headache Screening Questionnaire - Dutch version has a moderate level of evidence with a sensitivity of 0.69 (95% CI 0.55-0.80) and specificity of 0.90 (95% CI 0.77-0.96) for migraine, and a sensitivity of 0.36 (95% CI 0.21-0.54) and specificity of 0.86 (95% CI 0.74-0.92) for tension-type headache. For cervicogenic headache, only the cervical flexion rotation test was identified and had a very low level of evidence with a pooled sensitivity of 0.83 (95% CI 0.72-0.94) and specificity of 0.82 (95% CI 0.73-0.91).DISCUSSION: The current review is the first to establish an overview of the diagnostic accuracy of measurement instruments for headaches associated with musculoskeletal factors. However, as most measurement instruments were validated in one study, pooling was not always possible. Risk of bias was a serious problem for most studies, decreasing the level of evidence. More research is needed to enhance the level of evidence for existing measurement instruments for multiple headaches.
In Gelderland at industriepark Kleefsewaard, a prominent knowledge hub for hydrogen technology has been developed, featuring key industry players and research groups contributing to innovative and cost-effective hydrogen technologies. However, the region faces a challenge in the lack of available test equipment for hydrogen innovations. In Anion Exchange Membrane (AEM) technology, a route to follow is to create hydrogen more efficiently with stacks that can operate under high pressure (50 bar – 200 bar). This results in compact hydrogen storage. Research must be done to understand crossover effects which become more apparent at these high pressure conditions. The overall goal is to design a Balanced of Plant (BOP) system, incorporating Process Flow Diagram (PFD) and Piping & Instrumentation Diagram (P&ID) elements, alongside hydrogen purification systems and gas-liquid separators, for a test setup operating AEM stacks at 200 bar. De Nooij Stainless contributes by designing and fabricating a gas liquid separator, addressing challenges such as compatibility, elevated temperatures, and hydrogen safety. ON2Quest collaborates in supporting the design of a hydrogen purification system and the Balance of Plant (BoP), ensuring flexibility for testing future stacks and hydrogen purification components. HyET E-Trol specializes in high pressure (up to 200 bar) AEM electrolyser stacks and is responsible for providing problem statements and engineering challenges related to the (Balanced of Plant) BoP of AEM systems, and contributes in solving them. Subsequent projects will feature test sequences centered on other stacks, allowing for testing stacks from other companies. The resulting framework will provide a foundation for ongoing advancements, with contributions from each partner playing a crucial role in achieving the project's goals.