Urban green and shading are adaptation measures that reduce urban heat. This is evident from meteorological measurements and investigations with surveys and has been described in many papers (e.g. Klemm et al., 2015). The cooling effect of these adaptation measures is reflected by lower air temperatures and an improved thermal comfort. Shading and urban green are also experienced as cooler than impervious urban spaces without vegetation or shading. However, the cooling effect of water bodies in cities, such as rivers, lakes, ponds, canals,fountains, is not clear yet (Steeneveld et al., 2014). Several studies show that the cooling effect of water bodies in cities is small, or can even be a source of heat during nighttime. The effect depends on the characteristics of the water body and the meteorological conditions. Nevertheless, water is often mentioned as an adaptation measure to reduce urban heat.To support urban professionals in designing cooler urban environments by using water bodies, we investigated in more detail how different water types in msterdam contribute to cooling the environment. During five summer days, we measured the cooling effect of five different water bodies: a pond, a fountain, a canal, and two rivers. We used measurements from mobile weather stations (air temperature, relative humidity, wind speed, global radiation and globe temperature) and collected almost 1000 surveys near the water bodies and a reference location. From these data, we could determine the effect of the water bodies on air temperature, thermal comfort and thermal sensation. The research question that we tried to answer with this study is: What is the cooling effect of different water types in the city of Amsterdam during hot days? The study has been carried out within the framework of a Dutch research project ‘Urban climate resilience – Turning climate adaptation into practice’ and supports urban professionals to decide on the right adaptation measures to reduce urban heat.
Het is duidelijk dat klimaatverandering één van de belangrijkste problemen van deze tijd is, dat de uitstoot van broeikasgassen snel moet worden teruggedrongen en dat we ons moeten aanpassen aan klimaatverandering. Professionals spelen een belangrijke rol in de samenleving om klimaatbewustere beslissingen en gedrag te bevorderen. Om dit te kunnen doen hebben ze wel enige kennis nodig over klimaatverandering en klimaatdata, ze moeten enigszins klimaatgeletterd zijn. Met haar lectoraat Klimaatgeletterdheid richt Janette Bessembinder zich op het bevorderen van "klimaatgeletterdheid in werksituaties’ en het ondersteunen van professionals. Het gaat daarbij zowel om het gebruik van klimaat-data als om communicatie over klimaatverandering, voor beter onderbouwde en klimaatrobuustere beslissingen, waarbij speciale aandacht wordt gegeven aan hoe om te gaan met de range aan mogelijke klimaatveranderingen. Hierbij is expertise uit verschillende vakgebieden nodig. Door de samenwerking tussen het KNMI en de HvA worden deze samengebracht in dit lectoraat.
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
The admission of patients to intensive care units (ICU) is sometimes planned after a large operation. However, most admissions are acute, because of life-threatening infections or trauma as a result of accidents. Their stay can last from a couple of days to a couple of weeks. ICU patients are often in pain, in fragile health condition, and connected to various devices such as a ventilator, intravenous drip, and monitoring equipment. The resulting lack of mobilization, makes patients lose 1-3% of muscle power for each day they are in the ICU. Within 2 weeks, patients can lose up to 50% of their muscle mass. Early mobilization of ICU patients reduces their time on a respirator and their hospital length of stay. Because of this, ICUs have started early mobilization physical therapy. However, there is a lack of solutions for patients that properly handle fear of movement, are sufficiently personalized to the possibilities and needs of the individual and motivate recurring use in this context. Meanwhile, various technological advances enable new solutions that might bring benefits for this specific use case. Hospitals are experimenting with screens and projections on walls and ceilings to improve their patients’ stay. Standalone virtual reality and mixed reality headsets have become affordable, available and easy to use. In this project, we want to investigate: How can XR-technologies help long-stay ICU patients with early mobilization, with specific attention to the issues of fear of movement, personalization to the individual’s possibilities, needs and compliance over multiple sessions? The research will be carried out in co-creation with the target group and will consist of a state-of-the-art literature review and an explorative study.