Openheid geven over je psychische problemen op school of stage.
DOCUMENT
Most severe mental disorders have their onset between the age of 17 and 27, a time when many young adults begin participating in secondary or post-secondary education. The cognitive deficits typically associated with psychiatric disorders, especially psychotic disorders, increase the risk of leaving school early, which can lead to a reduction in employment opportunities later on in life and, in turn, a poorer long-term prognosis. Therefore, specific interventions aiming to improve these cognitive functions are needed. Cognitive remediation (CR) aims to improve cognitive functioning and may increase real-world functioning in educational performance. This study aims to examine the feasibility and applicability of a CR training named Mindset for students with psychotic disorders in the Netherlands.
DOCUMENT
Abstract Background: Antipsychotic-induced Weight Gain (AiWG) is a debilitating and common adverse effect of antipsychotics. AiWG negatively impacts life expectancy, quality of life, treatment adherence, likelihood of developing type-2 diabetes and readmission. Treatment of AiWG is currently challenging, and there is no consensus on the optimal management strategy. In this study, we aim to evaluate the use of metformin for the treatment of AiWG by comparing metformin with placebo in those receiving treatment as usual, which includes a lifestyle intervention. Methods: In this randomized, double-blind, multicenter, placebo-controlled, pragmatic trial with a follow-up of 52 weeks, we aim to include 256 overweight participants (Body Mass Index (BMI) > 25 kg/m2) of at least 16years of age. Patients are eligible if they have been diagnosed with schizophrenia spectrum disorder and if they have been using an antipsychotic for at least three months. Participants will be randomized with a 1:1 allocation to placebo or metformin, and will be treated for a total of 26 weeks. Metformin will be started at 500 mg b.i.d. and escalated to 1000 mg b.i.d. 2 weeks thereafter (up to a maximum of 2000mg daily). In addition, all participants will undergo a lifestyle intervention as part of the usual treatment consisting of a combination of an exercise program and dietary consultations. The primary outcome measure is difference in body weight as a continuous trait between the two arms from treatment inception until 26 weeks of treatment, compared to baseline. Secondary outcome measures include: 1) Any element of metabolic syndrome (MetS); 2) Response, defined as ≥5% body weight loss at 26 weeks relative to treatment inception; 3) Quality of life; 4) General mental and physical health; and 5) Cost-effectiveness. Finally, we aim to assess whether genetic liability to BMI and MetS may help estimate the amount of weight reduction following initiation of metformin treatment. Discussion: The pragmatic design of the current trial allows for a comparison of the efficacy and safety of metformin in combination with a lifestyle intervention in the treatment of AiWG, facilitating the development of guidelines on the interventions for this major health problem.
DOCUMENT
The design of healthcare facilities is a complex and dynamic process, which involves many stakeholders each with their own set of needs. In the context of healthcare facilities, this complexity exists at the intersection of technology and society because the very design of these buildings forces us to consider the technology–human interface directly in terms of living-space, ethics and social priorities. In order to grasp this complexity, current healthcare design models need mechanisms to help prioritize the needs of the stakeholders. Assistance in this process can be derived by incorporating elements of technology philosophy into existing design models. In this article, we develop and examine the Inclusive and Integrated Health Facilities Design model (In2Health Design model) and its foundations. This model brings together three existing approaches: (i) the International Classification of Functioning, Disability and Health, (ii) the Model of Integrated Building Design, and (iii) the ontology by Dooyeweerd. The model can be used to analyze the needs of the various stakeholders, in relationship to the required performances of a building as delivered by various building systems. The applicability of the In2Health Design model is illustrated by two case studies concerning (i) the evaluation of the indoor environment for older people with dementia and (ii) the design process of the redevelopment of an existing hospital for psychiatric patients.
DOCUMENT
Purpose – Older people with dementia (OPD) have specific housing and technology-related needs, for which various design principles exist. A model for designing environments and its constituting items for people with dementia that has a firm foundation in neurology may help guide designers in making design choices. The paper aims to discuss these issues. Design/methodology/approach – A general design model is presented consisting of three principles for OPD, namely designing for ageing people; designing for a favourable state and designing for beautiful moments. The neurosciences as a whole give shape to an eminent framework explaining the behaviour of OPD. One of the objectives of this paper is to translate the design principles into design specifications and to show that these specifications can be translated in a design. Findings – Philosophical concepts are introduced which are required to understand design for OPD. Four case studies from Dutch nursing homes are presented that show how the theory of modal aspects of the philosopher Dooyeweerd can be used to map design specifications in a systematic way. Research limitations/implications – These examples of design solutions illustrate the applicability of the model developed in this article. It emphasises the importance of the environment for supporting the daily life of OPD. Originality/value – There is a need for a design model for OPD. The environment and technology should initiate positive behaviours and meaningful experiences. In this paper, a general model for the designing of environments for OPD was developed that has a firm foundation in neurology and behavioural sciences. This model consists of six distinct steps and each step can be investigated empirically. In other words, this model may lay the foundation for an evidence-based design. Original article at Emerald: https://doi.org/10.1108/JET-11-2017-0043 For this paper Joost van Hoof received the Highly Recommended Award from Emerald Publishing Ltd. in October 2019: https://www.emeraldgrouppublishing.com/authors/literati/awards.htm?year=2019
MULTIFILE