We propose a novel deception detection system based on Rapid Serial Visual Presentation (RSVP). One motivation for the new method is to present stimuli on the fringe of awareness, such that it is more difficult for deceivers to confound the deception test using countermeasures. The proposed system is able to detect identity deception (by using the first names of participants) with a 100% hit rate (at an alpha level of 0.05). To achieve this, we extended the classic Event-Related Potential (ERP) techniques (such as peak-to-peak) by applying Randomisation, a form of Monte Carlo resampling, which we used to detect deception at an individual level. In order to make the deployment of the system simple and rapid, we utilised data from three electrodes only: Fz, Cz and Pz. We then combined data from the three electrodes using Fisher's method so that each participant was assigned a single p-value, which represents the combined probability that a specific participant was being deceptive. We also present subliminal salience search as a general method to determine what participants find salient by detecting breakthrough into conscious awareness using EEG.
In this paper we compare the effects of using three game user research methodologies to assist in shaping levels for a 2-D platformer game, and illustrate how the use of such methodologies can help level designers to make more informed decisions in an otherwise qualitative oriented design process. Game user interviews, game metrics and psychophysiology (biometrics) were combined in pairs to gauge usefulness in small-scale commercial game development scenarios such as the casual game industry. Based on the recommendations made by the methods, three sample levels of a Super Mario clone were improved and the opinions of a second sample of users indicated the success of these changes. We conclude that user interviews provide the clearest indications for improvement among the considered methodologies while metrics and biometrics add different types of information that cannot be obtained otherwise.
One major drawback of deception detection is its vulnerability to countermeasures, whereby participants wilfully modulate their physiological or neurophysiological response to critical guilt-determining stimuli. One reason for this vulnerability is that stimuli are usually presented slowly. This allows enough time to consciously apply countermeasures, once the role of stimuli is determined. However, by increasing presentation speed, stimuli can be placed on the fringe of awareness, rendering it hard to perceive those that have not been previously identified, hindering the possibility to employ countermeasures. We tested an identity deception detector by presenting first names in Rapid Serial Visual Presentation and instructing participants to lie about their own identity. We also instructed participants to apply a series of countermeasures. The method proved resilient, remaining effective at detecting deception under all countermeasures.
MULTIFILE