In this paper, we experimentally compare orthogonal frequency-division multiplexing (OFDM) and on-off keying (OOK) modulation in the context of the IEEE 802.15.13-2023 standard at bandwidths up to 50 MHz across a Li-Fi link with distances up to 5 m and a lateral offset up to 51°. Error vector magnitude (EVM) and bit error rate (BER) evaluations confirm that the high peak-to-average power ratio (PAPR) of OFDM limits the achievable transmission distance, but it offers higher data rates due to its higher spectral efficiency. Due to the lower PAPR, OOK-based Pulsed Modulation PHY (PM-PHY) shows a significantly higher link range. As the structure of the PM-PHY is based on OFDM symbols, the two solutions may also be combined to open a wider range of use cases for optical wireless communications.
LINK
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
Background: Children with difficulties in listening and understanding speech despite normal peripheral hearing, can be diagnosed with the diagnosis Auditory Processing Disorder (A). However, there are doubts about the validity of this diagnosis. The aim of this study was to examine the relation between the listening difficulties of children between 8 and 12 years with suspected A and the attention, working memory, nonverbal intelligence and communication abilities of these children.Material and methods: In this case-control study we examined 10 children who reported listening difficulties in spite of normal peripheral hearing (3 referred by speech-language pathologist in the Northern Netherlands, 6 by an audiological center in the Southern Netherlands and one by parental concern) and 21 typically developing children (recruitment through word of mouth and by the website Taalexpert.nl), ages 8;0 to 12;0 years. The parents of all children completed three questionnaires about history, behavioral symptoms of ADHD, and communication skills (Children’s Communication Checklist). Teachers of the children completed the Children’s Auditory Processing Performance Scale (CHAPPS). Children were assessed for auditory processing abilities (speech-in-noise, filtered speech, binaural fusion, dichotic listening), nonverbal intelligence (Raven’s Coloured Progressive Matrices), and working memory (Clinical Evaluation of Language Fundamentals). Auditory and visual attention was studied with four behavioral tests of the WAFF battery of the Vienna Test System (Schuhfried).Results: Preliminary analysis shows no differences between groups on the auditory processing tests and nonverbal intelligence quotient. Children in the experimental group have poorer communication performance (parent report), poorer listening skills (teacher report), and poorer working memory and attention skills (behavioral tests).Conclusions: The results of this study showed that there is a difference between children with listening complaints and typically developing children, but that the problems are not specific to the auditory modality. There seems to be no evidence for the validity of an auditory deficit.
DOCUMENT
Spectral imaging has many applications, from methane detection using satellites to disease detection on crops. However, spectral cameras remain a costly solution ranging from 10 thousand to 100 thousand euros for the hardware alone. Here, we present a low-cost multispectral camera (LC-MSC) with 64 LEDs in eight different colors and a monochrome camera with a hardware cost of 340 euros. Our prototype reproduces spectra accurately when compared to a reference spectrometer to within the spectral width of the LEDs used and the ±1σ variation over the surface of ceramic reference tiles. The mean absolute difference in reflectance is an overestimate of 0.03 for the LC-MSC as compared to a spectrometer, due to the spectral shape of the tiles. In environmental light levels of 0.5 W m−2 (bright artificial indoor lighting) our approach shows an increase in noise, but still faithfully reproduces discrete reflectance spectra over 400 nm–1000 nm. Our approach is limited in its application by LED bandwidth and availability of specific LED wavelengths. However, unlike with conventional spectral cameras, the pixel pitch of the camera itself is not limited, providing higher image resolution than typical high-end multi- and hyperspectral cameras. For sample conditions where LED illumination bands provide suitable spectral information, our LC-MSC is an interesting low-cost alternative approach to spectral imaging.
MULTIFILE
This paper addresses an approach to teaching embedded systems programming through a challenge-based competition involving robots. This pedagogical project distinguishes itself by incorporating international students from three international institutions through the Blended Intensive Program (BIP). The research findings indicate that this approach yields excellent results regarding student engagement and learning outcomes. The challenge-based program effectively promotes students' creative problem-solving abilities by combining theoretical instruction with hands-on experience in a competitive setting.
DOCUMENT
Exercise is one of the external factors associated with impairment of intestinal integrity, possibly leading to increased permeability and altered absorption. Here, we aimed to examine to what extent endurance exercise in the glycogen‐depleted state can affect intestinal permeability toward small molecules and protein‐derived peptides in relation to markers of intestinal function. Eleven well‐trained male volunteers (27 ± 4 years) ingested 40 g of casein protein and a lactulose/rhamnose (L/R) solution after an overnight fast in resting conditions (control) and after completing a dual – glycogen depletion and endurance – exercise protocol (first protocol execution). The entire procedure was repeated 1 week later (second protocol execution). Intestinal permeability was measured as L/R ratio in 5 h urine and 1 h plasma. Five‐hour urine excretion of betacasomorphin‐7 (BCM7), postprandial plasma amino acid levels, plasma fatty acid binding protein 2 (FABP‐2), serum pre‐haptoglobin 2 (preHP2), plasma glucagon‐like peptide 2 (GLP2), serum calprotectin, and dipeptidylpeptidase‐4 (DPP4) activity were studied as markers for excretion, intestinal functioning and recovery, inflammation, and BCM7 breakdown activity, respectively. BCM7 levels in urine were increased following the dual exercise protocol, in the first as well as the second protocol execution, whereas 1 h‐plasma L/R ratio was increased only following the first exercise protocol execution. FABP2, preHP2, and GLP2 were not changed after exercise, whereas calprotectin increased. Plasma citrulline levels following casein ingestion (iAUC) did not increase after exercise, as opposed to resting conditions. Endurance exercise in the glycogen depleted state resulted in a clear increase of BCM7 accumulation in urine, independent of DPP4 activity and intestinal permeability. Therefore, strenuous exercise could have an effect on the amount of food‐derived bioactive peptides crossing the epithelial barrier. The health consequence of increased passage needs more in depth studies.
DOCUMENT
Background Psychological aspects of labor and birth have received little attention within maternity care service planning or clinical practice. The aim of this paper is to propose a model demonstrating how neurohormonal processes, in particular oxytocinergic mechanisms, not only control the physiological aspects of labor and birth, but also contribute to the subjective psychological experiences of birth. In addition, sensory information from the uterus as well as the external environment might influence these neurohormonal processes thereby influencing the progress of labor and the experience of birth. Methodology In this new model of childbirth, we integrated the findings from two previous systematic reviews, one on maternal plasma levels of oxytocin during physiological childbirth and one meta-synthesis of women´s subjective experiences of physiological childbirth. Findings The neurobiological processes induced by the release of endogenous oxytocin during birth influence maternal behaviour and feelings in connection with birth in order to facilitate birth. The psychological experiences during birth may promote an optimal transition to motherhood. The spontaneous altered state of consciousness, that some women experience, may well be a hallmark of physiological childbirth in humans. The data also highlights the crucial role of one-to-one support during labor and birth. The physiological importance of social support to reduce labor stress and pain necessitates a reconsideration of many aspects of modern maternity care. Conclusion By listening to women’s experiences and by observing women during childbirth, factors that contribute to an optimized process of labor, such as the mothers’ wellbeing and feelings of safety, may be identified. These observations support the integrative role of endogenous oxytocin in coordinating the neuroendocrine, psychological and physiological aspects of labor and birth, including oxytocin mediated. decrease of pain, fear and stress, support the need for midwifery one-to-one support in labour as well as the need for maternity care that optimizes the function of these neuroendocrine processes even when birth interventions are used. Women and their partners would benefit from understanding the crucial role that endogenous oxytocin plays in the psychological and neuroendocrinological process of labor.
DOCUMENT
New technologies or approaches are being widely developed and proposed to be deployed in real energy systems to improve desired objectives; however, supporting decision making processes to select best solutions in terms of performance and efficiently following cost-benefit analysis require some sort of scientific evidence based tools. These tools should be reliable, robust, and capable of demonstrating the behaviour and impact of newly developed devices or algorithms in different pre- defined scenarios. Therefore, new approaches and technologies need to be tested and verified using a safe laboratory test environment.This report is about the development and realisation of some major tools and reliable methods to calculate risks and opportunities for integrating of new energy resources into the European electricity grid. Hanze University Groningen and Politecnico di Torino worked together within the STORE&GO project sharing laboratories, knowledge, hardware facilities and researchers for the realisation of the characterisation and mathematical modelling of renewable resources. Needed to realize a stable and reliable environment for remote physical hardware in the loop simulations.For this realisation we started with the local characterisation of a PV-Field and a PEM electrolyser at Entrance Groningen by logging and measuring the electric behaviour and specific device parameters to integrate and convert these into working mathematical models of a PV-Field and electrolyser prosumer. After testing and evaluating these models by comparing the results with the real-time measurements, these test and modelling is also realised from the remote laboratory in Torino. To achieve dynamical physical hardware we also realised dynamic mathematical model(s) with real-time functionality to interact directly with the remote electrolyser. To connect both the laboratories with full duplex communication functionalities between physical hardware and models we have also realized a network which is able to share network resources on both local and remote sites.
DOCUMENT
With a market demand for low cost, easy to produce, flexible and portable applications in healthcare, energy, biomedical or electronics markets, large research programs are initiated to develop new technologies to provide this demand with new innovative ideas. One of these fast developing technologies is organic printed electronics. As the term printed electronics implies, functional materials are printed via, e.g. inkjet, flexo or gravure printing techniques, on to a substrate material. Applications are, among others, organic light emitting diodes (OLED), sensors and Lab-on-a-chip devices. For all these applications, in some way, the interaction of fluids with the substrate is of great importance. The most used substrate materials for these low-cost devices are (coated) paper or plastic. Plastic substrates have a relatively low surface energy which frequently leads to poor wetting and/or poor adhesion of the fluids on the substrates during printing and/ or post-processing. Plasma technology has had a long history in treating materials in order to improve wetting or promote adhesion. The µPlasma patterning tool described in this thesis combines a digital inkjet printing platform with an atmospheric dielectric barrier discharge plasma tool. Thus enabling selective and local plasma treatment, at atmospheric pressure, of substrates without the use of any masking materials. In this thesis, we show that dependent on the gas composition the substrate surface can either be functionalized, thus increasing its surface energy, or material can be deposited on the surface, lowering its surface energy. Through XPS and ATR-FTIR analysis of the treated (polymer) substrate surfaces, chemical modification of the surface structure was confirmed. The chemical modification and wetting properties of the treated substrates remained present for at least one month after storage. Localized changes in wettability through µPlasma patterning were obtained with a resolution of 300µm. Next to the control of wettability of an ink on a substrate in printed electronics is the interaction of ink droplets with themselves of importance. In printing applications, coalescence of droplets is standard practice as consecutive droplets are printed onto, or close to each other. Understanding the behaviour of these droplets upon coalescence is therefore important, especially when the ink droplets are of different composition and/or volume. For droplets of equal volume, it was found that dye transport across the coalescence bridge could be fully described by diffusion only. This is as expected, as due to the droplet symmetry on either side of the bridge, the convective flows towards the bridge are of equal size but opposite in direction. For droplets of unequal volume, the symmetry across the bridge is no longer present. Experimental analysis of these merging droplets show that in the early stages of coalescence a convective flow from the small to large droplet is present. Also, a smaller convective flow of shorter duration from the large into the small droplet was identified. The origin of this flow might be due to the presence of vortices along the interface of the bridge, due to the strong transverse flow to open the bridge. To conclude, three potential applications were showcased. In the first application we used µPlasma patterning to create hydrophilic patterns on hydrophobic dodecyl-trichlorosilane (DTS) covered glass. Capillaries for a Lab-on-a-chip device were successfully created by placing two µPlasma patterned glass slides on top of each other separated by scotch tape. In the second application we showcased the production of a RFID tag via inkjet printing. Functional RFID-tags on paper were created via inkjet printing of silver nanoparticle ink connected to an integrated circuit. The optimal operating frequency of the produced tags is in the range of 860-865 MHz, making them usable for the European market, although the small working range of 1 m needs further improvement. Lastly, we showed the production of a chemresistor based gas sensor. In house synthesised polyemeraldine salt (PANi) was coated by hand on top of inkjet printed silver electrodes. The sensor proved to be equally sensitive to ethanol and water vapour, reducing its selectivity in detecting changes in gas composition.
DOCUMENT
Thermal comfort is determined by the combined effect of the six thermal comfort parameters: temperature, air moisture content, thermal radiation, air relative velocity, personal activity and clothing level as formulated by Fanger through his double heat balance equations. In conventional air conditioning systems, air temperature is the parameter that is normally controlled whilst others are assumed to have values within the specified ranges at the design stage. In Fanger’s double heat balance equation, thermal radiation factor appears as the mean radiant temperature (MRT), however, its impact on thermal comfort is often ignored. This paper discusses the impacts of the thermal radiation field which takes the forms of mean radiant temperature and radiation asymmetry on thermal comfort, building energy consumption and air-conditioning control. Several conditions and applications in which the effects of mean radiant temperature and radiation asymmetry cannot be ignored are discussed. Several misinterpretations that arise from the formula relating mean radiant temperature and the operative temperature are highlighted, coupled with a discussion on the lack of reliable and affordable devices that measure this parameter. The usefulness of the concept of the operative temperature as a measure of combined effect of mean radiant and air temperatures on occupant’s thermal comfort is critically questioned, especially in relation to the control strategy based on this derived parameter. Examples of systems which deliver comfort using thermal radiation are presented. Finally, the paper presents various options that need to be considered in the efforts to mitigate the impacts of the thermal radiant field on the occupants’ thermal comfort and building energy consumption.
DOCUMENT