Als na afloop van een brandincident een stoffelijk overschot wordt aangetroffen, is het van belang dat de causaliteit tussen de brand en het overlijden wordt onderzocht. Brand is zeer destructief voor het menselijk lichaam. Dit bemoeilijkt de interpretatie van onderzoeksbevindingen aan een lichaam. Er zijn diverse verschijnselen die tot op zekere hoogte duiden op vitaliteit (de betrokkene was levend) ten tijde van de brand. In dit artikel worden deze verschijnselen tegen het licht gehouden. Op basis van de huidige wetenschappelijke theorieën bestaan er geen verschijnselen die leiden tot de eenduidige conclusie over al dan niet vitale blootstelling. Wel kunnen verschijnselen een vermoeden van vitale blootstelling tot op zekere hoogte ondersteunen. Ontbreken de verschijnselen, dan is het niet mogelijk om een conclusie te trekken; de afwezigheid is geen bewijs van overlijden vóór het ontstaan van de brand. Om in de rechtszaal een uitspraak te kunnen doen over de causaliteit tussen brand en overlijden, wordt het noodzakelijk geacht om de waarde voor de aannemelijkheid van vitale blootstelling per verschijnsel te motiveren.
MULTIFILE
The catalytic conversion of glycerol to aromatics (GTA, e.g., benzene, toluene, and xylenes, BTX) over a shaped H-ZSM-5/Al2O3 (60/40 wt%) catalyst was investigated in a continuous fixed-bed reactor to study the addition of the Al2O3 binder in the catalyst formulation on catalyst performance. The experiments were performed under N2 at 550 °C, a WHSV of glycerol (pure) of 1 h−1, and atmospheric pressure. The spent H-ZSM-5/Al2O3 catalysts were reused after an oxidative regeneration at 680 °C and in total 5 reaction-regeneration cycles were performed. Catalyst characterization studies show that the addition of the Al2O3 binder does not affect the surface area and crystallinity of the formulation, but increases the total pore volume (mesopores in particular) and total acidity (Lewis acidity in particular). The H-ZSM-5/Al2O3 (60/40 wt%) catalyst shows a considerably prolonged catalyst life-time (8.5 vs. 6.5 h for H-ZSM-5), resulting in a significant increase in the total BTX productivity (710 vs. 556 mg g−1 H-ZSM-5). Besides, the addition of the Al2O3 binder retards irreversible deactivation. For instance, after 3 regenerations, catalyst performance is comparable to the fresh one. However, after 4 regenerations, some irreversible catalyst deactivation occurs, associated with a reduction in total pore volume, crystallinity, and acidity (Brønsted acidity in particular), and meso-porosity of the Al2O3 binder. This study shows that both the stability and reusability of H-ZSM-5-based catalysts for GTA are remarkably enhanced when using a suitable binder.
Plastic products are currently been critically reviewed due to the growing awareness on the related problems, such as the “plastic soup”. EU has introduced a ban for a number of single-use consumer products and fossil-based polymers coming in force in 2021. The list of banned products are expected to be extended, for example for single-use, non-compostable plastics in horticulture and agriculture. Therefore, it is crucial to develop sustainable, biodegradable alternatives. A significant amount of research has been performed on biobased polymers. However, plastics are made from a polymer mixed with other materials, additives, which are essential for the plastics production and performance. Development of biodegradable solutions for these additives is lacking, but is urgently needed. Biocarbon (Biochar), is a high-carbon, fine-grained residue that is produced through pyrolysis processes. This natural product is currently used to produce energy, but the recent research indicate that it has a great potential in enhancing biopolymer properties. The biocarbon-biopolymer composite could provide a much needed fully biodegradable solution. This would be especially interesting in agricultural and horticultural applications, since biocarbon has been found to be effective at retaining water and water-soluble nutrients and to increase micro-organism activity in soil. Biocarbon-biocomposite may also be used for other markets, where biodegradability is essential, including packaging and disposable consumer articles. The BioADD consortium consists of 9 industrial partners, a branch organization and 3 research partners. The partner companies form a complementary team, including biomass providers, pyrolysis technology manufacturers and companies producing products to the relevant markets of horticulture, agriculture and packaging. For each of the companies the successful result from the project will lead to concrete business opportunities. The support of Avans, University of Groningen and Eindhoven University of Technology is essential in developing the know-how and the first product development making the innovation possible.
Biochar was tien jaar geleden een onbekend materiaal voor verbetering van de bodem. Het heeft bovendien de eigenschap dat het CO2 opslaat. Biochar producten worden in Nederland hoegenaamd niet geproduceerd en hoogstens als halffabricaat voor organische meststof toegepast. Er zijn aanwijzingen dat Biochar niet alleen leidt tot verhoogde gewasopbrengsten maar dat er bij de productie van Biochar ook bio-energie vrijkomt. De bedrijven in dit project willen de potentie van Biochar onderzoeken en hebben behoefte aan Nederlandse pilots waarbij de toepassings-, productie- en afzetmogelijkheden van Biochar aantoonbaar gemaakt worden. Door middel van een haalbaarheidsonderzoek/pilot worden verschillende toepassingsmogelijkheden van Biochar verkend specifiek ter verbetering van de boomteeltgronden. Het haalbaarheidsonderzoek zal in kaart brengen welke afzetmogelijkheden er zijn van Biochar als basis voor meststof voor bodemverbetering in de boomteelt. Ook zal het onderzoek in beeld brengen hoeveel warmte er bij de productie vrij komt en hoe die opnieuw ingezet kan worden. Het project stelt de volgende vragen centraal: 1) Wat zijn de (verdere) mogelijkheden van Biochar als bodemverbeteraar in de landbouw en de boomteelt in het bijzonder? 2) Hoe is de vergelijking van Biochar als bodemverbeteraar in de energie/milieu balans ten opzichte van alternatieven (kunstmest, dierlijke mest, compost)? In het project worden deze vragen onderzocht en de resultaten bewerkstelligd. Avans werkt daarin samen met VAPPR, een jong bedrijf dat zich richt op de introductie van Biochar, FME (Fresh Mushroom Europ) en de Baaij advies. Vanuit Avans is het project een samenwerking tussen het Centre of Expertise Biobased Economy en het Expertisecentrum Sustainable Business. Laatstgenoemde heeft de lead in het onderzoek.
De maatschappij raakt zich in toenemende mate bewust dat het huidige lineaire economisch model niet meer houdbaar is. Het gebruik van petrochemische producten resulteert in een toename van CO2 in de atmosfeer. Verder neemt de hoeveelheid afval, met name plastics, verontrustende vormen aan en raken de oceanen zienderogen meer vervuild. Om de bovengenoemde problemen te tackelen is een transitie naar biobased en circulair essentieel. Naast dat we voor het maken van (consumenten) producten meer gebruik moeten maken van natuurlijke, hernieuwbare grondstofstromen zullen we de huidige materialen tevens veel beter moeten recyclen teneinde de druk op het milieu te verminderen. Een belangrijk thema in het recyclen van plastics is de chemische recycling. Een bekend voorbeeld waar op dit moment onderzoek naar verricht wordt is de depolymerisatie van PET naar de monomeren, GEVOLGD DOOR de scheiding van additieven en kleurstoffen en vervolgens weer een polymerisatie tot het gewenste plastic. In dit project wordt een andere methode voor chemische recycling onderzocht, namelijk de katalytische pyrolyse van (mengsels) van plastics tot de aromaten benzeen, tolueen en xylenen (BTX). Deze aromaten zijn veel gebruikte intermediairen voor tal van hoogwaardige plastics, zoals polyesters, polyamides en polyurethanen. Ruwweg 40% van alle huidige plastics is opgebouwd uit BTX. De techniek kan gebruikt worden voor mengsels van plastics en, door toepassing van de ex situ approach kunnen ook sterk vervuilde plastic stromen omgezet worden naar BTX. In samenwerking met het bedrijf BioBTX gaat de Rijksuniversiteit Groningen een kinetische studie doen naar de omzetting van plastics door gebruik te maken van tweetal geselecteerde plastic voedingen en een modelsysteem (etheen, propeen en mengels) voor de omzetting naar BTX middels een katalytische pyrolyse. De resultaten van deze studie zullen gebruikt worden voor een techno-economische evaluatie om te inventariseren of het proces commercieel aantrekkelijk is en geschikt voor verdere opschaling richting pilot/demoplant.