Rapport van de pilot SMART Sensordata Infrastructuur (SSI). Deze pilot is uitgevoerd door docenten en studenten van de opleiding AGIS van de HAS green academy in de periode van juni t/m december 2022 in samenwerking met en met financiële steun van het DCC voor Praktijkgericht onderzoek van SURF. Dit rapport bevat de volgende op te leveren resultaten:1. Ontwerp en praktische beschrijving van algemeen toepasbare datadriven-workflow voor sensordata2. Ontwerp en praktische beschrijving van metadata-model van sensor-data, gericht op datadefinitie en datakwaliteit
MULTIFILE
Er zijn veel verschillende sensoren beschikbaar die gebruikt kunnen worden om data in te winnen. Daarnaast zijn er veel verschillende werkwijzen om aan de slag te gaan met sensoren. Om een gestandaardiseerde werkwijze op te stellen, is een groep 4e-jaars AGIS studenten van de HAS green academy in het kader van het SURF project SMART sensordata infrastructuur aan de slag gegaan met het proces omtrent het inwinnen van data met sensoren. Hier is een werkwijze uit komen rollen die voor iedereen en overal werkt. In deze handleiding wordt de werkwijze stap voor stap uitgelegd.
MULTIFILE
Social networks and news outlets use recommender systems to distribute information and suggest news to their users. These algorithms are an attractive solution to deal with the massive amount of content on the web [6]. However, some organisations prioritise retention and maximisation of the number of access, which can be incompatible with values like the diversity of content and transparency. In recent years critics have warned of the dangers of algorithmic curation. The term filter bubbles, coined by the internet activist Eli Pariser [1], describes the outcome of pre-selected personalisation, where users are trapped in a bubble of similar contents. Pariser warns that it is not the user but the algorithm that curates and selects interesting topics to watch or read. Still, there is disagreement about the consequences for individuals and society. Research on the existence of filter bubbles is inconclusive. Fletcher in [5], claims that the term filter bubbles is an oversimplification of a much more complex system involving cognitive processes and social and technological interactions. And most of the empirical studies indicate that algorithmic recommendations have not locked large segments of the audience into bubbles [3] [6]. We built an agent-based simulation tool to study the dynamic and complex interplay between individual choices and social and technological interaction. The model includes different recommendation algorithms and a range of cognitive filters that can simulate different social network dynamics. The cognitive filters are based on the triple-filter bubble model [2]. The tool can be used to understand under which circumstances algorithmic filtering and social network dynamics affect users' innate opinions and which interventions on recommender systems can mitigate adverse side effects like the presence of filter bubbles. The resulting tool is an open-source interactive web interface, allowing the simulation with different parameters such as users' characteristics, social networks and recommender system settings (see Fig. 1). The ABM model, implemented in Python Mesa [4], allows users to visualise, compare and analyse the consequence of combining various factors. Experiment results are similar to the ones published in the Triple Filter Bubble paper [2]. The novelty is the option to use a real collaborative-filter recommendation system and a new metric to measure the distance between users' innate and final opinions. We observed that slight modifications in the recommendation system, exposing items within the boundaries of users' latitude of acceptance, could increase content diversity.References 1. Pariser, E.: The filter bubble: What the internet is hiding from you. Penguin, New York, NY (2011) 2. Geschke, D., Lorenz, J., Holtz, P.: The triple-filter bubble: Using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology (2019), 58, 129–149 3. Möller, J., Trilling, D., Helberger, N. , and van Es, B.: Do Not Blame It on the Algorithm: An Empirical Assessment of Multiple Recommender Systems and Their Impact on Content Diversity. Information, Communication and Society 21, no. 7 (2018): 959–77 4. Mesa: Agent-based modeling in Python, https://mesa.readthedocs.io/. Last accessed 2 Sep 2022 5. Fletcher, R.: The truth behind filter bubbles: Bursting some myths. Digital News Report - Reuters Institute (2020). https://reutersinstitute.politics.ox.ac.uk/news/truth-behind-filter-bubblesbursting-some-myths. Last accessed 2 Sep 2022 6. Haim, M., Graefe, A, Brosius, H: Burst of the Filter Bubble?: Effects of Personalization on the Diversity of Google News. Digital Journalism 6, no. 3 (2018): 330–43.
MULTIFILE
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is used as an important tool for biomedical application (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this tool and its application was recently published (2018), as an especial edition of the Journal of Aerosol Sciences. One of the main known bottlenecks of this technique, it is the fact that the necessary strong electric fields create a risk for electric discharges. Such discharges destabilize the process but can also be an explosion risk depending on the application. The goal of this project is to develop a reliable tool to prevent discharges in electrospray applications.