Aims: In-hospital prescribing errors may result in patient harm, such as prolonged hospitalisation and hospital (re)admission, and may be an emotional burden for the prescribers and healthcare professionals involved. Despite efforts, in-hospital prescribing errors and related harm still occur, necessitating an innovative approach. We therefore propose a novel approach, in-hospital pharmacotherapeutic stewardship (IPS). The aim of this study was to reach consensus on a set of quality indicators (QIs) as a basis for IPS. Methods: A three-round modified Delphi procedure was performed. Potential QIs were retrieved from two systematic searches of the literature, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. In two written questionnaires and a focus meeting (held between the written questionnaire rounds), potential QIs were appraised by an international, multidisciplinary expert panel composed of members of the European Association for Clinical Pharmacology and Therapeutics (EACPT). Results: The expert panel rated 59 QIs and four general statements, of which 35 QIs were accepted with consensus rates ranging between 79% and 97%. These QIs describe the activities of an IPS programme, the team delivering IPS, the patients eligible for the programme and the outcome measures that should be used to evaluate the care delivered. Conclusions: A framework of 35 QIs for an IPS programme was systematically developed. These QIs can guide hospitals in setting up a pharmacotherapeutic stewardship programme to reduce in-hospital prescribing errors and improve in-hospital medication safety.
DOCUMENT
Ouderen blijven in Nederland steeds langer zelfstandig wonen. Als dat echter niet meer lukt, is opname in een verpleeg- of verzorgingshuis mogelijk. Ongeveer 165 duizend ouderen wonen in Nederland in een dergelijke instelling. Aangezien verpleegkundige zorg datgene is dat de meeste bewoners ontvangen, is het van belang om inzicht te krijgen hoe deze zorg wordt geëvalueerd. Verpleegkundig-sensitieve indicatoren kunnen daarbij behulpzaam zijn.
LINK
Background: Nurse-sensitive indicators and nurses’ satisfaction with the quality of care are two commonly used ways to measure quality of nursing care. However, little is known about the relationship between these kinds of measures. This study aimed to examine concordance between nurse-sensitive screening indicators and nurse-perceived quality of care. Methods: To calculate a composite performance score for each of six Dutch non-university teaching hospitals, the percentage scores of the publicly reported nurse-sensitive indicators: screening of delirium, screening of malnutrition, and pain assessments, were averaged (2011). Nurse-perceived quality ratings were obtained from staff nurses working in the same hospitals by the Dutch Essentials of Magnetism II survey (2010). Concordance between the quality measures was analyzed using Spearman’s rank correlation. Results: The mean screening performances ranged from 63 % to 93 % across the six hospitals. Nurse-perceived quality of care differed significantly between the hospitals, also after adjusting for nursing experience, educational level, and regularity of shifts. The hospitals with high-levels of nurse-perceived quality were also high-performing hospitals according to nurse-sensitive indicators. The relationship was true for high-performing as well as lower-performing hospitals, with strong correlations between the two quality measures (r S = 0.943, p = 0.005). Conclusions: Our findings showed that there is a significant positive association between objectively measured nurse sensitive screening indicators and subjectively measured perception of quality. Moreover, the two indicators of quality of nursing care provide corresponding quality rankings. This implies that improving factors that are associated with nurses’ perception of what they believe to be quality of care may also lead to better screening processes. Although convergent validity seems to be established, we emphasize that different kinds of quality measures could be used to complement each other, because various stakeholders may assign different values to the quality of nursing care.
DOCUMENT
One of the mission-driven innovation policies of the Netherlands is energy transition which sets, among others, the challenge for a carbon-neutral built environment in 2050. Around 41% of Dutch houses do not yet have a registered energy label, and approximately 31% of the registered houses have label C or lower. This calls for action within the housing renovation industry. Bound to the 70 percent rule, a renovation plan requires full (or at least 70 percent) agreement on the renovation between relevant parties, including residents. In practice, agreement indicators focus mostly on economic and energy aspects. When indicators include people’s needs and preferences, it is expected to speed participation and agreement, increasing residents’ satisfaction and enhances the trust in public institutions. Tsavo was founded in 2015 to organise the sustainability of buildings for ambitious clients. Its sustainability process aims to accelerate renovation by keeping at their core value the social needs and preferences of residents. In this project Tsavo and TU Delft work together to optimise the sustainability process so, it includes everyone’s input and results in a sustainability plan that represents everyone. Tsavo’s role will be key in keeping the balance between both a sustainable renovation service that is cheaper and fast yet also attractive and with an impact on the quality of living. In this project, Tsavo’s sustainable renovation projects will be used to implement methods that focus on increasing participation and residents’ satisfaction. TU Delft will explore principles of attractive, accessible and representative activities to stimulate residents to decide on a renovation plan that is essential and meaningful to all.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations
In Europe nearly 10% of the population suffers from diabetes and almost 1% from Rheumatoid Arthritis which can lead to serious problems with mobility and active participation, especially in the ageing population. Pedorthists deliver personalised designed and manufactured orthopaedic footwear or insoles for these patients. However, despite their often laborious efforts upfront, the industry has very little means to quantify how successful the fitting and function of a shoe is. They have to rely on subjective, qualitative measures such as client satisfaction and diminishing of complaints. Although valuable, the need for objective quantitative data in this field is growing. Foot plantar pressure and shear forces are considered major indicators of potential foot problems. Devices to measure plantar pressure slowly gain terrain as providers of objective quantitative data to guide orthotic design and manufacturing. For shear forces however, measuring devices are not yet commercial available. Although shear forces are considered as a major contributor to ulcer formation in diabetic feet, their exact role still requires elucidation and quantification. This project aims to develop a prototype of an in-shoe wearable device that measures both shear forces and pressure using state-of-the-art developments in sensor technologies, smart textiles and wireless data transfer. The collaboration of pedorthists’ small and medium-sized enterprises (SME)’s with medical device engineering companies, knowledge institutes,technical universities and universities of applied sciences in this project will bring together the different fields of expertise required to create an innovative device. It is expected that the tool will be beneficial to improve the quality of pedorthists’ services and potentially reduce health insurance costs. Furthermore, it can be used in new shear forces research and open new business potential. However, the eventual aim is to improve patient care and help maintain personal mobility and participation in society.