Purpose – Older people with dementia (OPD) have specific housing and technology-related needs, for which various design principles exist. A model for designing environments and its constituting items for people with dementia that has a firm foundation in neurology may help guide designers in making design choices. The paper aims to discuss these issues. Design/methodology/approach – A general design model is presented consisting of three principles for OPD, namely designing for ageing people; designing for a favourable state and designing for beautiful moments. The neurosciences as a whole give shape to an eminent framework explaining the behaviour of OPD. One of the objectives of this paper is to translate the design principles into design specifications and to show that these specifications can be translated in a design. Findings – Philosophical concepts are introduced which are required to understand design for OPD. Four case studies from Dutch nursing homes are presented that show how the theory of modal aspects of the philosopher Dooyeweerd can be used to map design specifications in a systematic way. Research limitations/implications – These examples of design solutions illustrate the applicability of the model developed in this article. It emphasises the importance of the environment for supporting the daily life of OPD. Originality/value – There is a need for a design model for OPD. The environment and technology should initiate positive behaviours and meaningful experiences. In this paper, a general model for the designing of environments for OPD was developed that has a firm foundation in neurology and behavioural sciences. This model consists of six distinct steps and each step can be investigated empirically. In other words, this model may lay the foundation for an evidence-based design. Original article at Emerald: https://doi.org/10.1108/JET-11-2017-0043 For this paper Joost van Hoof received the Highly Recommended Award from Emerald Publishing Ltd. in October 2019: https://www.emeraldgrouppublishing.com/authors/literati/awards.htm?year=2019
MULTIFILE
Thermal comfort in operating theatres is a less addressed research component of the in-door environment in operating theatres. The air quality naturally gets most attention when considering the risk of surgical site infections. However, the importance of thermal comfort must not be underestimated. In this research, the current thermal comfort situation of staff members is investigated. Results show that the thermal comfort for the members of a surgical team is perceived as not optimal. Application of the PMV and DR models needs further attention when applied for operating theatres. For the investigated ventilation systems, the differences in thermal comfort outcomes are small.
Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.