Urban flooding has become a key issue for many cities around the world. The project ‘INnovations for eXtreme Climatic EventS’ (INXCES) developed new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level. DEMs (digital elevation maps) have been used for more than a decade now as quick scan models to indicate locations that are vulnerable to urban flooding. In the last years the datasets are getting bigger and multidisciplinary stakeholders are becoming more demanding and require faster and more visual results. In this paper, the development and practical use of DEMs is exemplified by the case study of Bergen (Norway), where flood modelling using DEM is carried out in 2017 and in 2009. We can observe that the technology behind tools using DEMs is becoming more common and improved, both with a higher accuracy and a higher resolution. Visualization tools are developed to raise awareness and understanding among different stakeholders in Bergen and around the world. We can conclude that the evolution of DEMS is successful in handling bigger datasets and better (3D) visualization of results with a higher accuracy and a higher resolution. With flood maps the flow patterns of stormwater are analysed and locations are selected to implement (sub-)surface measures as SuDS (Sustainable Urban Drainage systems) that store and infiltrate stormwater. In the casestudy Bergen the following (sub-)surface SuDS have been recently implemented with the insights of DEMS: settlement storage tank, rainwater garden, swales, permeable pavement and I/T-drainage. The research results from the case study Bergen will be shared by tools to stimulate international knowledge exchange. New improved DEMs and connected (visualization) tools will continue to play an important role in (sub-)surface flood management and climate resilient urban planning strategies around the world.
DOCUMENT
Urbanisation and climate change have an effect on the water balance in our cities resulting in challenges as flooding, droughts and heatstress. Implementation of Sustainable Urban Drainage Systems (SuDS) can help to restore the water balance in cities by storing and infiltrating stormwater into the subsurface to minimise flooding, restoration of groundwater tables to prevent droughts, lowering temperatures by evapotranspiration to fight heatstress. Urban planners and otherstakeholders in municipalities and water authorities struggle with implementing SuDS at locations where infiltration of water seems challenging. Questions arise as: can you infiltrate in countries as The Netherlands with parts under sea level, high groundwater table and low permeable soil? Can you infiltrate in Norway with low permeable or impermeable bedrock and frozen ground most of theyear? How do you find space to implement SuDS in the dense urban areas of Bucharest? These questions are answered by researchers of the JPI Water funded project INovations for eXtreme Climatic Events (INXCES).To answer the question on ‘can we infiltrate stormwater under worse case conditions?’, testing of the hydraulic capacity take place at rainwater gardens in Norway (Bergen and Trondheim) and (bio)swales in the low lying parts of The Netherlands. The first results show that even under these ‘extreme’ hydraulic circumstances the hydraulic capacity (or empty time) is sufficient to infiltratemost of the stormwater throughout the year.INXCES exchanged researchers on an international level, shared research results with stakeholders and sets up guidelines for design, implementation and maintenance of SuDS to promote the implementation of sustainable water management systems throughout the world.One of the tools used to promote SuDS is www.climatescan.nl, an open source online map application that provides an easy-to-access database of international project information in the field of urban resilience and climate adaptation. The tool is able to map several sustainable urban drainage systems as has been done for Norway, The Netherlands, Romania and other countries in the world.The tool is used for engagement with stakeholders within EU projects as INXCES and WaterCoG and resulted in international knowledge exchange on infiltration of stormwater under extreme climate and geohydrolic circumstances.
DOCUMENT
Stormwater runoff has severe negative and direct impact on the quality of surface waters and groundwater. The impact can cause chemical and heavy-metal pollution. Applying well established methods to map pollutants in urban areas and specifically in Nature-Based Solutions (NBS), such as Sustainable UrbanDrainage Systems (SuDS) is a step towards improving the water quality in the urban water cycle. Traditional mapping of pollutants by the means of soil samples is costly, which is the main reason why the environmental-technical functioning of rainwater facilities has not been investigated on a large scale andsystematically. X-ray fluorescence (XRF) is a known analysing method for finding metals and other components, for laboratory analysis and portable instruments. In this work we propose a new approach of mapping method for pollutants in-situ, such as heavy metals in soil in SuDS, with case studies from theNetherlands where swales were implemented 20 years ago. In situ XRF measurements is a quick and costefficient analysis for heavy meatal mapping in the respect to contaminated soil. In situ XRF measures of various elements, including heavy metals is carried out in a quickscan and accurate manner and measures both qualitatively and quantitatively. It makes the time-consuming and costly interim analyses by laboratories superfluous. In this study, we suggest a new methodology approach for in situ mapping of pollutants in various swales that were implemented from 20 to 5 years ago. The results differ due to multiple factors (age, use of materials, storage volume, maintenance, run off quality, etc.). Several locations reached unacceptable levels, above the national thresholds for pollutants. The spatial distribution of pollutants in the over 30 swales mapped in the Netherlands show that the preferred water flow in theSuDS controls the spreading of pollutants. The swales investigated are presented in an interactive way with the open source tool www.climatescan.nl, containing more than 100 swales, part of which has been investigated with in situ XRF measurements. The research results are of great importance for all stakeholders in (inter)national cities that are involved in climate adaptation. SuDS is the most widely used method for storing stormwater and infiltrating in the Netherlands. However, there is still too little knowledge about the long-term functioning of the soil of these facilities.
DOCUMENT
'Versteende pleinen in steden zijn hitte-eilanden. Gemeenten willen daarom meer groen, maar dat is niet eenvoudig. In Groningen zijn nieuwe bomen geplant in een innovatief waterbergingssysteem. De Grote Markt ging op de schop.'
LINK
PowerPointpresentatie gebruikt tijdens een lezing door Peter van der Maas, lector 'Sustainable Water Systems' aan hogeschool Van Hall Larenstein, tijdens het symposium 'Natuurlijke Zuiveringstechnieken' op 13 november 2019 te Wageningen.
DOCUMENT
Kunnen wadi’s en raingardens overal? Hoe regel je het beheer? Wat is de ecologische waarde van een wadi of raingarden? Hoe overtuig ik de gemeente? In sneltreinvaart toont Floris Boogaard (Hanzehogeschool Groningen en Deltares) honderden inspirerende voorbeelden. Hij geeft daarmee antwoord op de meest gestelde vragen over wadi’s en raingardens: het kan (bijna) overal en de woonomgeving wordt er leefbaarder van.
LINK
In Nederland is de meest toegepaste infiltratievoorziening in de openbare ruimte in de wadi (water afvoer drainage en infiltratie), in het buitenland zie je vaker 'raingardens' en deze regenwatertuintjes infiltreren sinds enkele jaren in Nederland.
DOCUMENT
This CIENS-report sums up the main findings from the project “Cultural heritage and water management in urban planning” (Urban WATCH), financed by the Research Council of Norway through the MILJØ2015 programme, and cofunded by the Directorate for Cultural Heritage in Norway (Riksantikvaren) and the Geological Survey of Norway (NGU). The project started up in 2012 and ended in 2015.
DOCUMENT
In today’s city environments, extreme weather conditions are a fact oflife. Amsterdam, Mumbai, Nairobi or Sydney… climate change issuesneed to be tackled all around the world.In the last couple of decades, Amsterdam has dealt with largeramounts of rainwater, severe heat stress and a decreased biodiversity.In order to strengthen urban resilience to climate change, blue-green(BG) roofs are increasingly being introduced. BG roofs placean additional water layer underneath the green layer. The idea is thatthese roofs reduce runoff after rainfall by retaining precipitation andmitigate heat stress, caused by increased evapotranspiration (the sumof evaporation from the land surface and transpiration from plants)and a higher albedo effect (the ability of surfaces to reflect sunlight).
MULTIFILE