De Digitale Universiteit (DU) performed a quickscan to determine the usability of the IMS Question and TestInteroperability (QTI) specification as a format to store questions and tests developed for and by the consortium. The original report is available in Dutch from the website of De Digitale Universiteit and an unofficial English translation of that report can be downloaded. In October 2003, Canvas Learning Ltd., developers of the Canvas Canvas Learning Author and Canvas Learning Player responded to the Quickscan by sending their Canvas Flash player which could also render the test questions developed for the Quickscan. The Canvas Learning Player hadn't been tested as part of the original Quickscan because none of the partners within De Digitale Universiteit was using the application at that time. This addendum contains a short overview of the results of the tests for the Flash player as it was provided by Canvas Learning Ltd. All tests have been conducted by the author of the quickscan using the original test set. The set and the player used can be downloaded as a SCORM compliant package.
One major drawback of deception detection is its vulnerability to countermeasures, whereby participants wilfully modulate their physiological or neurophysiological response to critical guilt-determining stimuli. One reason for this vulnerability is that stimuli are usually presented slowly. This allows enough time to consciously apply countermeasures, once the role of stimuli is determined. However, by increasing presentation speed, stimuli can be placed on the fringe of awareness, rendering it hard to perceive those that have not been previously identified, hindering the possibility to employ countermeasures. We tested an identity deception detector by presenting first names in Rapid Serial Visual Presentation and instructing participants to lie about their own identity. We also instructed participants to apply a series of countermeasures. The method proved resilient, remaining effective at detecting deception under all countermeasures.
MULTIFILE
In recent years, human-induced seismicity in the northern part of the Netherlands increased rendering the seismic response of unreinforced masonry (URM) structures critical. Majority of the existing buildings in the Netherlands are URM, which are not designed to withstand earthquakes. This issue motivates engineering and construction companies in the region to research on the seismic assessment of the existing structures.The companies working in the structural engineering field in the region were forced to adapt very quickly to the earthquake related problems, such as strengthening of existing buildings after earthquake. Such solutions are of prime importance for the Groningen region due to the extent of the earthquake problems and need for strengthening the houses. The research published in the literature show that the connections play an important role in seismic resistant of the houses. Fixing or improving the poor wall-to-wall or floor-to-wall connections may have a large positive impact on the overall seismic behaviour. Some strengthening solutions are already provided by SMEs, and an extensive experimental campaign was carried out at TU Delft on retrofitted connections. In this project, a new experiment will be run on a large shake-table, unique in the Netherlands, that can simulate earthquake vibrations. These tests, together with the previous experience, will complement the overall knowledge on the strengthening solutions and their performance under real-time actual earthquake vibrations.
In recent years, human-induced seismicity in the northern part of the Netherlands increased rendering the seismic response of unreinforced masonry (URM) structures critical. Majority of the existing buildings in the Netherlands are URM, which are not designed to withstand earthquakes. This issue motivates engineering and construction companies in the region to research on the seismic assessment of the existing structures. The companies working in the structural engineering field in the region were forced to adapt very quickly to the earthquake related problems, such as strengthening of existing buildings after earthquake. Such solutions are of prime importance for the Groningen region due to the extent of the earthquake problems and need for strengthening the houses. The research published in the literature show that the connections play an important role in seismic resistant of the houses. Fixing or improving the poor wall-to-wall or floor-to-wall connections may have a large positive impact on the overall seismic behaviour. Some strengthening solutions are already provided by SMEs, and an extensive experimental campaign was carried out at TU Delft on retrofitted connections. In this project, a new experiment will be run on a large shake-table, unique in the Netherlands, that can simulate earthquake vibrations. These tests, together with the previous experience, will complement the overall knowledge on the strengthening solutions and their performance under real-time actual earthquake vibrations.