With climate change and urban development, water systems are changing faster than ever. Currently, the ecological status of water systems is still judged based on single point measurements, without taking into account the spatial and temporal variability of water quality and ecology. There is a need for better and more dynamic monitoring methods and technologies. Aquatic drones are becoming accessible and intuitive tools that may have an important role in water management. This paper describes the outcomes, field experiences and feedback gathered from the use of underwater drones equipped with sensors and video cameras in various pilot applications in The Netherlands, in collaboration with local water managers. It was observed that, in many situations, the use of underwater drones allows one to obtain information that would be costly and even impossible to obtain with other methods and provides a unique combination of three-dimensional data and underwater footage/images. From data collected with drones, it was possible to map different areas with contrasting vegetation, to establish connections between fauna/flora species and local water quality conditions, or to observe variations of water quality parameters with water depth. This study identifies opportunities for the application of this technology, discusses their limitations and obstacles, and proposes recommendation guidelines for new technical designs
LINK
Revolutionary advances in technology have been seen in many industries, with the IIoT being a prime example. The IIoT creates a network of interconnected devices, allowing smooth communication and interoperability in industrial settings. This not only boosts efficiency, productivity, and safety but also provides transformative solutions for various sectors. This research looks into open-source IIoT and edge platforms that are applicable to a range of applications with the aim of finding and developing high-potential solutions. It highlights the effect of open-source IIoT and edge computing platforms on traditional IIoT applications, showing how these platforms make development and deployment processes easier. Popular open-source IIoT platforms include DeviceHive and Thingsboard, while EdgeX Foundry is a key platform for edge computing, allowing IIoT applications to be deployed closer to data sources, thus reducing latency and conserving bandwidth. This study seeks to identify potential future domains for the implementation of IIoT solutions using these open-source platforms. Additionally, each sector is evaluated based on various criteria, such as development requirement analyses, market demand projections, the examination of leading companies and emerging startups in each domain, and the application of the International Patent Classification (IPC) scheme for in-depth sector analysis.
MULTIFILE
Although learning analytics benefit learning, its uptake by higher educational institutions remains low. Adopting learning analytics is a complex undertaking, and higher educational institutions lack insight into how to build organizational capabilities to successfully adopt learning analytics at scale. This paper describes the ex-post evaluation of a capability model for learning analytics via a mixed-method approach. The model intends to help practitioners such as program managers, policymakers, and senior management by providing them a comprehensive overview of necessary capabilities and their operationalization. Qualitative data were collected during pluralistic walk-throughs with 26 participants at five educational institutions and a group discussion with seven learning analytics experts. Quantitative data about the model’s perceived usefulness and ease-of-use was collected via a survey (n = 23). The study’s outcomes show that the model helps practitioners to plan learning analytics adoption at their higher educational institutions. The study also shows the applicability of pluralistic walk-throughs as a method for ex-post evaluation of Design Science Research artefacts.
LINK
TU Delft, in collaboration with Gravity Energy BV, has conducted a feasibility study on harvesting electric energy from wind and vibrations using a wobbling triboelectric nanogenerator (WTENG). Unlike conventional wind turbines, the WTENG converts wind/vibration energy into contact-separation events through a wobbling structure and unbalanced mass. Initial experimental findings demonstrated a peak power density of 1.6 W/m² under optimal conditions. Additionally, the harvester successfully charged a 3.7V lithium-ion battery with over 4.5 μA, illustrated in a self-powered light mast as a practical demonstration in collaboration with TimberLAB. This project aims to advance this research by developing a functioning prototype for public spaces, particularly lanterns, in partnership with TimberLAB and Gravity Energy. The study will explore the potential of triboelectric nanogenerators (TENG) and piezoelectric materials to optimize energy harvesting efficiency and power output. Specifically, the project will focus on improving the WTENG's output power for practical applications by optimizing parameters such as electrode dimensions and contact-separation quality. It will also explore cost-effective, commercially available materials and best fabrication/assembly strategies to simplify scalability for different length scales and power outputs. The research will proceed with the following steps: Design and Prototype Development: Create a prototype WTENG to evaluate energy harvesting efficiency and the quantity of energy harvested. A hybrid of TENG and piezoelectric materials will be designed and assessed. Optimization: Refine the system's design by considering the scaling effect and combinations of TENG-piezoelectric materials, focusing on maximizing energy efficiency (power output). This includes exploring size effects and optimal dimensions. Real-World Application Demonstration: Assess the optimized system's potential to power lanterns in close collaboration with TimberLAB, DVC Groep BV and Gravity Energy. Identify key parameters affecting the efficiency of WTENG technology and propose a roadmap for its exploitation in other applications such as public space lighting and charging.
Road freight transport contributes to 75% of the global logistics CO2 emissions. Various European initiatives are calling for a drastic cut-down of CO2 emissions in this sector [1]. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and autonomous vehicle technology. One particular innovation that aims to solve this problem is multi-articulated vehicles (road-trains). They have a smaller footprint and better efficiency of transport than traditional transport vehicles like trucks. In line with the missions for Energy Transition and Sustainability [2], road-trains can have zero-emission powertrains leading to clean and sustainable urban mobility of people and goods. However, multiple articulations in a vehicle pose a problem of reversing the vehicle. Since it is extremely difficult to predict the sideways movement of the vehicle combination while reversing, no driver can master this process. This is also the problem faced by the drivers of TRENS Solar Train’s vehicle, which is a multi-articulated modular electric road vehicle. It can be used for transporting cargo as well as passengers in tight environments, making it suitable for operation in urban areas. This project aims to develop a reverse assist system to help drivers reverse multi-articulated vehicles like the TRENS Solar Train, enabling them to maneuver backward when the need arises in its operations, safely and predictably. This will subsequently provide multi-articulated vehicle users with a sustainable and economically viable option for the transport of cargo and passengers with unrestricted maneuverability resulting in better application and adding to the innovation in sustainable road transport.
A huge amount of data are being generated, collected, analysed and distributed in a fast pace in our daily life. This data growth requires efficient techniques for analysing and processing high volumes of data, for which preserving privacy effectively is a crucial challenge and even a key necessity, considering the recently coming into effect privacy laws (e.g., the EU General Data Protection Regulation-GDPR). Companies and organisations in their real-world applications need scalable and usable privacy preserving techniques to support them in protecting personal data. This research focuses on efficient and usable privacy preserving techniques in data processing. The research will be conducted in different directions: - Exploring state of the art techniques. - Designing and applying experiments on existing tool-sets. - Evaluating the results of the experiments based on the real-life case studies. - Improving the techniques and/or the tool to meet the requirements of the companies. The proposal will provide results for: - Education: like offering courses, lectures, students projects, solutions for privacy preservation challenges within the educational institutes. - Companies: like providing tool evaluation insights based on case studies and giving proposals for enhancing current challenges. - Research centre (i.e., Creating 010): like expanding its expertise on privacy protection technologies and publishing technical reports and papers. This research will be sustained by pursuing following up projects actively.