Op basis van een cross-sectioneel onderzoek onder deelnemers aan een hardloopevenement worden verschillen tussen snelle en langzame hardlopers onderzocht. Verschillen in motieven voor hardlopen en ervaren belang van app functionaliteiten werden in kaart gebracht. Ook werd gekeken naar verschillen in hun intentie om te blijven hardlopen, hoe apps gebruikt worden en verwachte effecten van app gebruik.
Objectives To report (1) the injury incidence in recreational runners in preparation for a 8-km or 16-km running event and (2) which factors were associated withan increased injury risk. Methods Prospective cohort study in Amsterdam, the Netherlands. Participants (n=5327) received a baseline survey to determine event distance (8 km or 16 km), main sport, running experience, previous injuries, recent overuse injuries and personal characteristics. Three days after the race, they received a follow-up survey to determine duration of training period, running distance per week, training hours, injuries during preparation and use oftechnology. Univariate and multivariate regression models were applied to examine potential risk factors for injuries. Results 1304 (24.5%) participants completed both surveys. After excluding participants with current health problems, no signed informed consent, missing or incorrect data, we included 706 (13.3%) participants. In total, 142 participants (20.1%) reported an injury during preparation for the event. Univariate analyses (OR: 1.7, 95% CI 1.1 to 2.4) and multivariate analyses (OR: 1.7, 95% CI 1.1 to 2.5) showed that injury history was a significant risk factor for running injuries (Nagelkerke R-square=0.06). Conclusion An injury incidence for recreational runners in preparation for a running event was 20%. A previous injury was the only significant risk factor for runningrelated injuries.
Within this study the aim is to measure running workload and relevant running technique key points on varying cadence in recreational runners using a custom build sensor system ‘Nodes’. Seven participants ran on a treadmill at a self-chosen comfortable speed. Cadence was randomly guided by a metronome using 92%, 96%, 100%, 104%, and 108% of the preferred cadence in 2-min trials. Workload was measured by collecting the heart rate and the rating of perceived exertion (RPE 1 to 10) scores. Heart rate data shows that the 100% cadence trial was most economical with a relative heart rate of 99.2%. The 108% cadence trial had the lowest relative RPE score with 96.2%. The sample rate of the Nodes system during this experiment was too low to analyze the key points. Three requirements are proposed for the further engineering of a wearable running system, (i) sampling frequency of minimal 50 Hz, (ii) step-by-step analysis, and (iii) collecting workload in the heart rate and RPE.