Citizen participation in local renewable energy projects is often promoted as many suppose it to be a panacea for the difficulties that are involved in the energy transition process. Quite evidently, it is not; there is a wide variety of visions, ideologies and interests related to an ‘energy transition’. Such a variety is actually a precondition for a stakeholder participation process, as stakeholder participation only makes sense if there is ‘something at stake’. Conflicting viewpoints, interests and debates are the essence of participation. The success of stakeholder participation implies that these differences are acknowledged, and discussed, and that this has created mutual understanding among stakeholders. It does not necessarily create ‘acceptance’. Renewable energy projects often give rise to local conflict. The successful implementation of local renewable energy systems depends on the support of the local social fabric. While at one hand decisions to construct wind turbines in specific regions trigger local resistance, the opposite also occurs! Solar parks sometimes create a similar variation: Various communities try to prevent the construction of solar parks in their vicinity, while other communities proudly present their parks. Altogether, local renewable energy initiatives create a rather chaotic picture, if regarded from the perspective of government planning. However, if we regard the successes, it appears the top down initiatives are most successful in areas with a weak social fabric, like industrial areas, or rather recently reclaimed land. Deeply rooted communities, virtually only have successful renewable energy projects that are more or less bottom up initiatives. This paper will first sketch why participation is important, and present a categorisation of processes and procedures that could be applied. It also sketches a number of myths and paradoxes that might occur in participation processes. ‘Compensating’ individuals and/or communities to accept wind turbines or solar parks is not sufficient to gain ‘acceptance’. A basic feature of many debates on local renewable energy projects is about ‘fairness’. The implication is that decision-making is neither on pros and cons of various renewable energy technologies as such, nor on what citizens are obliged to accept, but on a fair distribution of costs and benefits. Such discussions on fairness cannot be short cut by referring to legal rules, scientific evidence, or to standard financial compensations. History plays a role as old feelings of being disadvantaged, both at individual and at group level, might re-emerge in such debates. The paper will provide an overview of various local controversies on renewable energy initiatives in the Netherlands. It will argue that an open citizen participation process can be organized to work towards fair decisions, and that citizens should not be addressed as greedy subjects, trying to optimise their own private interests, but as responsible persons.
DOCUMENT
This article addresses European energy policy through conventional and transformative sustainability approaches. The reader is guided towards an understanding of different renewable energy options that are available on the policy making table and how the policy choices have been shaped. In arguing that so far, European energy policy has been guided by conventional sustainability framework that focuses on eco-efficiency and ‘energy mix’, this article proposes greater reliance on circular economy (CE) and Cradle to Cradle (C2C) frameworks. Exploring the current European reliance on biofuels as a source of renewable energy, this article will provide recommendations for transition to transformative energy choices. http://dx.doi.org/10.13135/2384-8677/2331 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
In this report, the details of an investigation into the eect of the low induction wind turbines on the Levelised Cost of Electricity (LCoE) in a 1GW oshore wind farm is outlined. The 10 MW INNWIND.EU conventional wind turbine and its low induction variant, the 10 MW AVATAR wind turbine, are considered in a variety of 10x10 layout configurations. The Annual Energy Production (AEP) and cost of electrical infrastructure were determined using two in-house ECN software tools, namely FarmFlow and EEFarm II. Combining this information with a generalised cost model, the LCoE from these layouts were determined. The optimum LCoE for the AVATAR wind farm was determined to be 92.15 e/MWh while for the INNWIND.EU wind farm it was 93.85 e/MWh. Although the low induction wind farm oered a marginally lower LCoE, it should not be considered as definitive due to simple nature of the cost model used. The results do indicate that the AVATAR wind farms require less space to achieve this similar cost performace, with a higher optimal wind farm power density (WFPD) of 3.7 MW/km2 compared to 3 MW/km2 for the INNWIND.EU based wind farm.
DOCUMENT
The intermittency of renewable energy technologies requires adequate storage technologies. Hydrogen systems consisting of electrolysers, storage tanks, and fuel cells can be implemented as well as batteries. The requirements of the hydrogen purification unit is missing from literature. We measured the same for a 4.5 kW PEM electrolyser to be 0.8 kW for 10 min.A simulation to hybridize the hydrogen system, including its purification unit, with lithium-ion batteries for energy storage is presented; the batteries also support the electrolyser. We simulated a scenario for operating a Dutch household off-electric-grid using solar and wind electricity to find the capacities and costs of the components of the system.Although the energy use of the purification unit is small, it influences the operation of the system, affecting the sizing of the components. The battery as a fast response efficient secondary storage system increases the ability of the electrolyser to start up.
DOCUMENT
The project STORE&GO aims to investigate all the aspects regarding the integration of large-scale Power-to-Gas (PtG) at European level, by exploiting it as means for long term storage. One of the aspects that should be properly addressed is the beneficial impact that the integration of PtG plants may have on the electricity system.In the project framework, WP6 devoted its activities to investigate different aspects of the integration of PtG in the electricity grid, with the previous delivered reports.This deliverable focused in particular on how integrate the information about the facilities replicating the real world condition into a simulation environment. For doing this, the concept of remote Physical Hardware-in-the-Loop (PHIL) has been used and exploit.Remote simulation with physical hardware appears to be an effective means for investigating new technologies for energy transition, with the purpose of solving the issues related to the introduction of new Renewable Energy Sources (RES) into the electricity system. These solutions are making the overall energy systems to be investigated much more complex than the traditional ones, introducingnew challenges to the research. In fact:• the newly integrated technologies deal with different energy vectors and sectors, thus• requiring interoperability and multidisciplinary analysis;• the systems to be implemented often are large-scale energy systems leading to enormously complicated simulation models;• the facilities for carrying out the experiments require huge investments as well as suitable areas where to be properly installed.This may lead to the fact that a single laboratory with limited expertise, hardware/software facilities and available data has not the ability to secure satisfactory outcomes. The solution is the share of existing research infrastructures, by virtually joining different distant laboratories or facilities.This results in improvement of simulation capabilities for large-scale systems by decoupling into subsystems to be run on distant targets avoidance of replication of already existing facilities by exploiting remote hardware in the loop concept for testing of remote devices.Also confidential information of one lab, whose sharing may be either not allowed or requiring long administrative authorization procedures, can be kept confidential by simulating models locally and exchanging with the partners only proper data and simulation results through the co-simulation medium.Thanks to the realized method it is possible to real time analyse renewable devices at remotepower plants and place them in the loop of a local network simulation.The results reported show that the architecture developed is strong enough for being applied also atnew renewable power plants. This opens the possibility to use the data for research purposed, butalso to act in remote on the infrastructure in case of particular test (for example the acceptance test).
DOCUMENT
Decentralised renewable energy production in the form of fuels or electricity can have large scale deployment in future energy systems, but the feasibility needs to be assessed. The novelty of this paper is in the design and implementation of a mixed integer linear programming optimisation model to minimise the net present cost of decentralised hydrogen production for different energy demands on neighbourhood urban scale, while simultaneously adhering to European Union targets on greenhouse gas emission reductions. The energy system configurations optimised were assumed to possibly consist of a variable number or size of wind turbines, solar photovoltaics, grey grid electricity usage, battery storage, electrolyser, and hydrogen storage. The demands served are hydrogen for heating and mobility, and electricity for the households. A hydrogen residential heating project currently being developed in Hoogeveen, The Netherlands, served as a case study. Six scenarios were compared, each taking one or multiple energy demand services into question. For each scenario the levelised cost of hydrogen was calculated. The lowest levelised cost of hydrogen was found for the combined heating and mobility scenario: 8.36 €/kg for heating and 9.83 €/kg for mobility. The results support potential cost reductions of combined demand patterns of different energy services. A sensitivity analysis showed a strong influence of electrolyser efficiency, wind turbine parameters, and emission reduction factor on levelised cost. Wind energy was strongly preferred because of the lower cost and the low greenhouse gas emissions, compared to solar photovoltaics and grid electricity. Increasing electrolyser efficiency and greenhouse gas emission reduction of the used technologies deserve further research.
DOCUMENT
Installing photovoltaic panels (PV) on household rooftops can significantly contribute to mitigating anthropogenic climate change. The mitigation potential will be much higher when households would use PVs in a sustainable way, that is, if they match their electricity demand to their PVs electricity production, as to avoid using electricity from the grid. Whilst some have argued that owning PVs motivate households to use their PV in a sustainable way, others have argued that owning a PV does not result in load shifting, or that PV owners may even use more energy when their PV production is low. This paper addresses this critical issue, by examining to what extent PV owners are likely to shift their electricity demand to reduce the use of electricity from the grid. Extending previous studies, we analyse actual high frequency electricity use from the grid using smart meter data of households with and without PVs. Specifically, we employ generalized additive models to examine whether hourly net electricity use (i.e., the difference between electricity consumed from the grid and supplied back to the grid) of households with PVs is not only lower during times when PV production is high, but also when PV production low, compared to households without PVs. Results indicate that during times when PV production is high, net electricity use of households with PV is negative, suggesting they sent back excess electricity to the power grid. However, we found no difference in net electricity use during times when PV production is low. This suggests that installing PV does not promote sustainable PV use, and that the mitigation potential of PV installment can be enhanced by encouraging sustainable PV use
LINK
Excess of renewable electricity from wind turbines or solar panels is used for electrolysis of water. To store this renewable energy as methane, the hydrogen is fed to an anaerobic digester to stimulate biological methanation by hydrogenotrophic methanogens. This workpackage focusses on the best ways for hydrogen delivery and the community changes in a biomethanation reactor as a result of hydrogen supply.
DOCUMENT
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
DOCUMENT
Residential electricity distribution grid capacity is based on the typical peak load of a house and the load simultaneity factor. Historically, these values have remained predictable, but this is expected to change due to increasing electric heating using heat pumps and rooftop solar panel electricity generation. It is currently unclear how this increase in electrification will impact household peak load and load simultaneity, and hence the required grid capacity of residential electricity distribution grids. To gain better insight, transformer and household load measurements were taken in an all-electric neighborhood over a period of three years. These measurements were analyzed to determine how heat pumps and solar panels will alter peak load and load simultaneity, and hence grid capacity requirements. The impacts of outdoor effective temperature and solar panel orientation were also analyzed. Moreover, the potential for smart grids to reduce grid capacity requirements was examined.
DOCUMENT