One of the most complex and urgent challenges in the energy transition is the large-scale refurbishment of the existing housing stock in the built environment. In order to comply with the goals of the Paris convention, the aim is to live “energy-neutral,” that is, a dwelling should produce as much sustainable energy as it consumes on a yearly basis. This means that millions of existing houses need to undergo a radical energy retrofit. In the next 30 years, all dwellings should be upgraded to nearly zero-energy buildings, which is a challenge to accomplish for a reasonable price. Across the EU, many projects have developed successful approaches to the improvement of building technologies and processes, as well a better involvement of citizens. It is important to compare and contrast such approaches and disseminate lessons learned. In practice, it is crucial to raise the level of participation of inhabitants in neighborhood renovation activities. Therefore, the central question of this issue is: How can we increase the involvement of tenants and homeowners into this radical energy renovation?
DOCUMENT
This paper presents work aimed at improved organization and performance of production in housing renovation projects. The purpose is to explore and demonstrate the potential of lean work organization and industrialized product technology to improve workflow and productive time. The research included selected case studies that have been found to implement lean work organization and industrialized product technology in an experimental setting. Adjustments to the work organization and construction technology have been implemented on site. The effects of the adjustments have been measured and were reviewed with operatives and managers. The data have been collected and analyzed, in comparison to traditional settings. Two projects were studied. The first case implied am application of lean work organization in which labor was reorganized redistributing and balancing operations among operatives of different trades. In the second case industrialized solution for prefabricated installation of prefabricated roofs. In both cases the labor productivity increased substantially compared to traditional situations. Although the limited number of cases, both situations appeared to be representative for other housing projects. This has led to conclusions extrapolated from both cases applicable to other projects, and contribution to the knowledge to improve production in construction. Vrijhoef, R. (2016). “Effects of Lean Work Organization and Industrialization on Workflow and Productive Time in Housing Renovation Projects.” In: Proc. 24 th Ann. Conf. of the Int’l. Group for Lean Construction, Boston, MA, USA, sect.2 pp. 63–72. Available at: .
MULTIFILE
There is an urgent need for energy renovation of the existing building stock, in order to reach the climate goals, set in Paris in 2016. To reach climate targets, it is important to considerably lower energy demand as well as switch to fossil-free heating systems. Unfortunately, renovation rates across the EU remain at a low level of 1% per year. Deep renovation, which lowers energy use with 60% or more, accounts only for 0,2% of renovations. The heating transition thus progresses much more slowly than the electricity transition. We draw on the framework of technological innovation systems, which allows comparison of different transitions. In the literature, it is argued that the configurational nature of the renovation system is one of the main reasons for the slow heating transition. The renovation system is context-bound and consists of many actors both on the demand-side and the supply-side, which leads to a fragmented market. For increasing the speed of the heating transition, it is deemed important to counter this fragmentation. We carried out a review of reports and publications of EU-funded projects on energy renovation. In many projects fragmentation in the building sector was identified as one of the main obstacles. We analyzed the deliverables of these energy renovation projects to find tried and tested solutions. One of these is the so-called one-stop-shop, which promises to improve the organization of the supply side, while also providing an appropriate and affordable solution to the customer. In the discussion we argue that the energy renovation system could be improved by increasing collaboration on the supply side and at the same time simplifying the renovation process for customers. A promising tool to make this happen is the one-stop-shop.
LINK
One of the mission-driven innovation policies of the Netherlands is energy transition which sets, among others, the challenge for a carbon-neutral built environment in 2050. Around 41% of Dutch houses do not yet have a registered energy label, and approximately 31% of the registered houses have label C or lower. This calls for action within the housing renovation industry. Bound to the 70 percent rule, a renovation plan requires full (or at least 70 percent) agreement on the renovation between relevant parties, including residents. In practice, agreement indicators focus mostly on economic and energy aspects. When indicators include people’s needs and preferences, it is expected to speed participation and agreement, increasing residents’ satisfaction and enhances the trust in public institutions. Tsavo was founded in 2015 to organise the sustainability of buildings for ambitious clients. Its sustainability process aims to accelerate renovation by keeping at their core value the social needs and preferences of residents. In this project Tsavo and TU Delft work together to optimise the sustainability process so, it includes everyone’s input and results in a sustainability plan that represents everyone. Tsavo’s role will be key in keeping the balance between both a sustainable renovation service that is cheaper and fast yet also attractive and with an impact on the quality of living. In this project, Tsavo’s sustainable renovation projects will be used to implement methods that focus on increasing participation and residents’ satisfaction. TU Delft will explore principles of attractive, accessible and representative activities to stimulate residents to decide on a renovation plan that is essential and meaningful to all.
Examining in-class activities to facilitate academic achievement in higher educationThere is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied.During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users.The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and short-term academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknownFinally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms.The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.
The objective of CW4N is to identify opportunities for wood reuse through the use of advanced digital production technologies1, and develop related implementation strategies for public organisations, in particular housing corporations and municipalities. Strategies include concrete proposals on how to: a) collect and process wood waste from residential buildings; b) add value to reclaimed wood by means of digital production; c) increase tenant involvement and acceptance for waste wood collection and circular reuse; d) create impactful applications for a circular economy. The research is carried out in four work packages. The first identifies the nature of residential wood waste (volume, type, application) from past case projects of housing corporations Ymere and Rochdale. Their upcoming renovation plans are evaluated, to identify resources and hotspots for future implementations. The second workpackage explores what applications can be conceived, given the available wood and digital production tools at the AUAS Robot Lab. In the third workpackage case studies are carried out for actual projects of the housing corporations. Physical prototypes are used as conversation pieces to involve tenants and increase their acceptance for circular applications. In the fourth workpackage all findings are combined in a set of implementation strategies. High-quality data-collection is crucial for the project, since it will determine the nature of the materials for designing and manufacturing applications. In this proposal, additional resources are added to the project to take care of data-collection. Due to covid-19, project managers at Ymere and Rochdale must focus on day-to-day work to get ongoing and planned building projects done, reducing their time for data collection from previous projects. In addition, because of teleworking, non-digital data such as drawings and reports are not easily accessible. To enhance data-collection, student-assistants will be added to the project to survey ongoing renovation projects in the field.