Objective: To explore the nature and extent of possible residual complaints among Dutch hypothyroid patients using thyroid replacement therapy, we initiated a comprehensive study measuring health-related quality of life (QoL), daily functioning, and hypothyroidism-associated symptoms in patients and control persons. Methods: An online survey measuring thyroid-specific QoL (ThyPRO), daily functioning, and hypothyroidismassociated symptoms (ThySHI) was distributed among treated hypothyroid patients and control individuals. The advertising text was formulated in an open-ended manner. Patients also provided their most recent thyroid blood values and their thyroid medication. Results: There was a large-sized impairment of QoL (Cohen’s d = 1.04, +93 % ThyPRO score) in hypothyroid patients on thyroid replacement therapy (n = 1195) as compared to controls (n = 236). Daily functioning was significantly reduced i.e., general health (-38 %), problems with vigorous- (+64 %) and moderate activities (+77 %). Almost 80 % of patients reported having complaints despite thyroid medication and in-range thyroid blood values, with 75 % expressing a desire for improved treatment options for hypothyroidism (total n = 1194). Hypothyroid patients experienced 2.8 times more intense hypothyroidism-associated symptoms than controls (n = 865, n = 203 resp). Patients’ median reported serum concentrations were: TSH 0.90 mU/L, FT4 17.0 pmol/L, and FT3 2.67 pmol/L, with 52 % having low T3 levels (<3.1 pmol/L). The QoL was not found to be related to age, sex, BMI, menopausal status, stress, serum thyroid parameters, the origin and duration of hypothyroidism, the type of thyroid medication, or the LT4 dose used. Conclusions: Our study revealed major reductions in quality of life and daily functioning, and nearly three times more intense hypothyroidism-associated symptoms in treated hypothyroid patients as compared to controls, despite treatment and largely in-range serum TSH/FT4 concentrations. The QoL was not associated with serum thyroid parameters. We recommend future research into the origin of persisting complaints and the development of improved treatment modalities for hypothyroidism.
DOCUMENT
Objective: To systematically describe changes in pain and functioning in patients with osteoarthritis (OA) awaiting total joint replacement (TJR), and to assess determinants of this change. Methods: MEDLINE®, EMBASE, CINAHL® and Cochrane Database were searched through June 2008. The reference lists of eligible publications were reviewed. Studies that monitored pain and functioning in patients with hip or knee OA during the waiting list for TJR were analyzed. Data were collected with a pre-specified collection tool. Methodological quality was assessed and a best-evidence analysis was performed to summarize results. Results: Fifteen studies, of which two were of high quality, were included and involved 788 hip and 858 knee patients (mean age 59-72 and main wait 42-399 days). There was strong evidence that pain (in hip and knee OA) and self-reported functioning (in hip OA) do not deteriorate during a
DOCUMENT
The climate change and depletion of the world’s raw materials are commonly acknowledged as the biggest societal challenges. Decreasing the energy use and the related use of fossil fuels and fossil based materials is imperative for the future. Currently 40% of the total European energy consumption and about 45% of the CO2 emissions are related to building construction and utilization (EC, 2015). Almost half of this energy is embodied in materials. Developing sustainable materials to find replacement for traditional building materials is therefore an increasingly important issue. Mycelium biocomposites have a high potential to replace the traditional fossil based building materials. Mycelium is the ‘root network’ of mushrooms, which acts as a natural glue to bind biomass. Mycelium grows through the biomass, which functions simultaneously as a growth substrate and a biocomposite matrix. Different organic residual streams such as straw, sawdust or other agricultural waste can be used as substrate, therefore mycelium biocomposites are totally natural, non-toxic, biological materials which can be grown locally and can be composted after usage (Jones et al., 2018). In the “Building On Mycelium” project Avans University of Applied Sciences, HZ University of Applied Sciences, University of Utrecht and the industrial partners will investigate how the locally available organic waste streams can be used to produce mycelium biocomposites with properties, which make them suitable for the building industry. In this project the focus will be on studying the use of the biocomposite as raw materials for the manufacturing of furniture or interior panels (insulation or acoustic).
An important line of research within the Center of Expertise HAN BioCentre is the development of the nematode Caenorhabditis elegans as an animal testing replacement organism. In the context of this, us and our partners in the research line Elegant! (project number. 2014-01-07PRO) developed reliable test protocols, data analysis strategies and new technology, to determine the expected effects of exposure to specific substances using C. elegans. Two types of effects to be investigated were envisaged, namely: i) testing of possible toxicity of substances to humans; and ii) testing for potential health promotion of substances for humans. An important deliverable was to show that the observed effects in the nematode can indeed be translated into effects in humans. With regard to this aspect, partner Preventimed has conducted research in obesity patients during the past year into the effect of a specific cherry extract that was selected as promising on the basis of the study with C. elegans. This research is currently being completed and a scientific publication will have to be written. The Top Up grant is intended to support the publication of the findings from Elegant! and also to help design experimental protocols that enable students to become acquainted with alternative medical testing systems to reduce the use of laboratory animals during laboratory training.
This proposal is directed at the creation of sustainable embedding and preservation methods for biomaterials, in particular those incorporating structural colours (SCs). SCs use the interaction of light with highly ordered, nanostructured materials to generate colour. SCs are intense, angle dependent, can be polarized, non-fading and non-toxic; all characteristics with advantages over pigments. SCs can be created from bacteria, are widely found in nature and offers a route to the creation of high-performance biobased materials: i.e. ‘green’ replacements for dyes. However, naturally derived structural coloured biomaterials, particularly bacteria, require preservation or embedding – an essential step in developing durable products. The current embedding agent is an epoxy resin which is not a sustainable reagent. Indeed, there is a wider need for thermoset matrix materials and other polymers that are more environmentally friendly yet with good performance and cost. In this proposal we will develop such matrix materials using bacterial SCs as a test case and the primary application.