People in western countries spend approximately 90% of their time indoors. This severely affects their health (WHO 2013; Klepeis et al. 2001). The health risks are exacerbated if people travel between indoor spaces by car or public transport. Buildings on streets specifically designed to create a human scale and connected with the street-space can potentially invite people to walk and enhance their engagement with their surroundings (O’Mara 2019; Ewing et al. 2013). Since the 1960s, influential empirical studies have raised awareness of the walkability of streets (e.g. Jacobs 2008) but reliable evidence on the effectiveness of applied design solutions remains scarce (Spanjar & Suurenbroek 2020). This eye-tracking study focused on the visual ‘scanning’ of streetscapes and people’s appreciation of applied design principles. The aim was to gather together lessons learned from a variety of streetscapes in cities around the world and use them to inform the design of new developments in the Netherlands. Google Street View was used to select 19 images of streets in high-density environments with human-scale attributes in their façades and street-spaces. They were presented in a randomized order in a laboratory setting to 40 participants, who viewed them for 5 seconds. The participants’ visual explorative behaviour was recorded with advanced eye-tracking technology. A survey recorded their overall appreciation of the scenes and mouse-tracking collated their specific areas of interest (see fig. 1). The comparative analysis of the participants’ aggregated eye-fixation images together with the supplementary methods suggests that certain attributes for creating a human scale catch the eye in the first few seconds and are highly appreciated. These include the variety of a street’s façades, a street’s enclosedness, and the level of detail in the transition zone between the private ground floor and the public street (see fig. 2). Green features are particularly valued and might have important restorative qualities for people who spend most of their time indoors (Kaplan 1995; Ulrich 1984). Future research should focus on the design of façades and the street-space itself, taking people’s indoor lives and related stress levels as a starting point.
People in western countries spend approximately 90% of their time indoors. This severely affects their health (WHO 2013; Klepeis et al. 2001). The health risks are exacerbated if people travel between indoor spaces by car or public transport. Buildings on streets specifically designed to create a human scale and connected with the street-space can potentially invite people to walk and enhance their engagement with their surroundings (O’Mara 2019; Ewing et al. 2013). Since the 1960s, influential empirical studies have raised awareness of the walkability of streets (e.g. Jacobs 2008) but reliable evidence on the effectiveness of applied design solutions remains scarce (Spanjar & Suurenbroek 2020). This eye-tracking study focused on the visual ‘scanning’ of streetscapes and people’s appreciation of applied design principles. The aim was to gather together lessons learned from a variety of streetscapes in cities around the world and use them to inform the design of new developments in the Netherlands. Google Street View was used to select 19 images of streets in high-density environments with human-scale attributes in their façades and street-spaces. They were presented in a randomized order in a laboratory setting to 40 participants, who viewed them for 5 seconds. The participants’ visual explorative behaviour was recorded with advanced eye-tracking technology. A survey recorded their overall appreciation of the scenes and mouse-tracking collated their specific areas of interest (see fig. 1). The comparative analysis of the participants’ aggregated eye-fixation images together with the supplementary methods suggests that certain attributes for creating a human scale catch the eye in the first few seconds and are highly appreciated. These include the variety of a street’s façades, a street’s enclosedness, and the level of detail in the transition zone between the private ground floor and the public street (see fig. 2). Green features are particularly valued and might have important restorative qualities for people who spend most of their time indoors (Kaplan 1995; Ulrich 1984). Future research should focus on the design of façades and the street-space itself, taking people’s indoor lives and related stress levels as a starting point.
Large cities in the West respond to an ever-increasing shortage of affordable housing by accelerating the process of urban densification. Amsterdam, for instance, aims to increase its housing stock by 10 percent in the next 15 years as its population is expected to grow by 20 percent. As in other cities, it seems inevitable that high-rise buildings with higher skyscrapers than in the past will be built within the existing urban fabric. Such large-scale (re)development projects shape the conditions for inhabitants’ eye-level experiences, perception of place and overall well-being. The new hybrid field of neuroarchitecture offers promising eye-tracking technology and theories for measuring inhabitants’ visual experiences of the city and rethinking the effectiveness of applied design principles across the globe. In this paper, the ‘classic’ design solutions for creating streetscapes on a human scale in densified areas have been assessed by eye-tracking 31 participants in a laboratory setting, all of whom viewed photographs of 15 existing streetscapes in high-rise environments. The study drew on theories from the field of neuroarchitecture and used input from a panel of (landscape) architects and urban designers to design the research and analyze the eye-tracked patterns. The results indicate that the classic design principles (horizontal–vertical rhythms and variety; active ground floor; tactile materials) play a significant role in people’s appreciation of the streetscape and that their attention is unconsciously captured by the presence of these principles. The absence of the design principles seems to result in a scattered ‘searching’ eye movement pattern. This also suggests that a coherent design of streetscapes in high-rise environments may contribute to a human scale at eye-level.
MULTIFILE