Background: Follow‑up of curatively treated primary breast cancer patients consists of surveillance and aftercare and is currently mostly the same for all patients. A more personalized approach, based on patients’ individual risk of recurrence and personal needs and preferences, may reduce patient burden and reduce (healthcare) costs. The NABOR study will examine the (cost‑)effectiveness of personalized surveillance (PSP) and personalized aftercare plans (PAP) on patient‑reported cancer worry, self‑rated and overall quality of life and (cost‑)effectiveness. Methods: A prospective multicenter multiple interrupted time series (MITs) design is being used. In this design, 10 participating hospitals will be observed for a period of eighteen months, while they ‑stepwise‑ will transit from care as usual to PSPs and PAPs. The PSP contains decisions on the surveillance trajectory based on individual risks and needs, assessed with the ‘Breast Cancer Surveillance Decision Aid’ including the INFLUENCE prediction tool. The PAP contains decisions on the aftercare trajectory based on individual needs and preferences and available care resources, which decision‑making is supported by a patient decision aid. Patients are non‑metastasized female primary breast cancer patients (N= 1040) who are curatively treated and start follow‑up care. Patient reported outcomes will be measured at five points in time during two years of follow‑up care (starting about one year after treatment and every six months thereafter). In addition, data on diagnostics and hospital visits from patients’ Electronical Health Records (EHR) will be gathered. Primary outcomes are patient‑reported cancer worry (Cancer Worry Scale) and over‑all quality of life (as assessed with EQ‑VAS score). Secondary outcomes include health care costs and resource use, health‑related quality of life (as measured with EQ5D‑5L/SF‑12/EORTC‑QLQ‑C30), risk perception, shared decision‑making, patient satisfaction, societal participation, and cost‑effectiveness. Next, the uptake and appreciation of personalized plans and patients’ experiences of their decision‑making process will be evaluated. Discussion: This study will contribute to insight in the (cost‑)effectiveness of personalized follow‑up care and contributes to development of uniform evidence‑based guidelines, stimulating sustainable implementation of personalized surveillance and aftercare plans. Trial registration: Study sponsor: ZonMw. Retrospectively registered at ClinicalTrials.gov (2023), ID: NCT05975437.
MULTIFILE
Background: In the past years, a mobile health (mHealth) app called the Dutch Talking Touch Screen Questionnaire (DTTSQ) was developed in The Netherlands. The aim of development was to enable Dutch physical therapy patients to autonomously complete a health-related questionnaire regardless of their level of literacy and digital skills. Objective: The aim of this study was to evaluate the usability (defined as the effectiveness, efficiency, and satisfaction) of the prototype of the DTTSQ for Dutch physical therapy patients with diverse levels of experience in using mobile technology. Methods: The qualitative Three-Step Test-Interview method, including both think-aloud and retrospective probing techniques, was used to gain insight into the usability of the DTTSQ. A total of 24 physical therapy patients were included. The interview data were analyzed using a thematic content analysis approach aimed at analyzing the accuracy and completeness with which participants completed the questionnaire (effectiveness), the time it took the participants to complete the questionnaire (efficiency), and the extent to which the participants were satisfied with the ease of use of the questionnaire (satisfaction). The problems encountered by the participants in this study were given a severity rating that was used to provide a rough estimate of the need for additional usability efforts. Results: All participants within this study were very satisfied with the ease of use of the DTTSQ. Overall, 9 participants stated that the usability of the app exceeded their expectations. The group of 4 average-/high-experienced participants encountered only 1 problem in total, whereas the 11 little-experienced participants encountered an average of 2 problems per person and the 9 inexperienced participants an average of 3 problems per person. A total of 13 different kind of problems were found during this study. Of these problems, 4 need to be addressed before the DTTSQ will be released because they have the potential to negatively influence future usage of the tool. The other 9 problems were less likely to influence future usage of the tool substantially. Conclusions: The usability of the DTTSQ needs to be improved before it can be released. No problems were found with satisfaction or efficiency during the usability test. The effectiveness needs to be improved by (1) making it easier to navigate through screens without the possibility of accidentally skipping one, (2) enabling the possibility to insert an answer by tapping on the text underneath a photograph instead of just touching the photograph itself, and (3) making it easier to correct wrong answers. This study shows the importance of including less skilled participants in a usability study when striving for inclusive design and the importance of measuring not just satisfaction but also efficiency and effectiveness during such studies.
LINK
Background: Concepts such as participation and environment may differ across cultures. Consequently, to use a measure like the Participation and Environment Measure for Children and Youth (PEM-CY) in other than the original English-speaking contexts, cultural adaptation needs to be assured. The aim of this study was to cross-culturally translate and adapt the PEM-CY into German as it is used in Germany, Austria and Switzerland. Methods: Fifteen parents of children and adolescents with disabilities from three German speaking countries participated in three rounds of think-aloud interviews. We followed the procedure of cultural equivalence guidelines including two additional steps. Data was analyzed by content analysis using semantic, idiomatic, experiential and conceptual equivalence. Results: Results show adaptations mainly focused on experiential and conceptual equivalence, with conceptual equivalence being the most challenging to reach. Examples of experiential equivalence included adapting the examples of activities in the PEM-CY to reflect those typical in German speaking countries. Conceptual equivalence mainly addressed aspects of “involvement” and “environment” of children and adolescents and was reached through adaptations such as enhanced instructions and structures, and additional definitions. Conclusions: This study presents a cross-cultural translation and adaptation process to develop a German version of the PEM-CY that is suitable for Germany, Austria and Switzerland. Using a modified cultural adaptation process, a culturally adapted version of PEM-CY (German) is now available for research, practice and further validation.