In this paper I describe the ways in which the communication discipline can make a hidden crisis transparent. For this purpose I examine the concept of crisis entrepreneurship from a communication point of view. Using discourse analysis, I analyse the discursive practices of crisis entrepreneurs in the domain of education in the Netherlands. This paper is part of my Ph.D. project in which I examine the dilemmas encountered by crisis entrepreneurs and the interactional solutions they choose in addressing a crisis. In my Ph.D. project I have analysed how crisis entrepreneurs use discursive practices: (1) to show the factuality of the problem. For example, the way the problem is presented is too theoretical and is not a problem in reality; (2) to present the credibility of the messenger as an authentic, legitimate spokesman. Crisis entrepreneurs may be accused of wanting to attract attention to their own cause; (3) to create the accountability for the problem and the solution. For example, crisis entrepreneurs can be accused of nursing personal grievances or of drawing attention to the issue without actively attempting to solve it. The conclusion is that a communication professional is able to recognize a problem raised by crisis entrepreneurs. Knowledge of interactional dilemmas helps communication professionals understand the potential of crisis entrepreneurs.
Problems with communication and collaboration among perinatal caregivers threaten the quality and safety of care given to mothers and babies. Good communication and collaboration are critical to safe care for mothers and babies. In this study the researchers focused on studies examining the factors associated with good communication and collaboration as they occur in working routines in maternity care practice. Their study is part of a growing trend of identifying the positive aspects of communication and collaboration in maternity care.
MULTIFILE
Most violence risk assessment tools have been validated predominantly in males. In this multicenter study, the Historical, Clinical, Risk Management–20 (HCR-20), Historical, Clinical, Risk Management–20 Version 3 (HCR-20V3), Female Additional Manual (FAM), Short-Term Assessment of Risk and Treatability (START), Structured Assessment of Protective Factors for violence risk (SAPROF), and Psychopathy Checklist–Revised (PCL-R) were coded on file information of 78 female forensic psychiatric patients discharged between 1993 and 2012 with a mean follow-up period of 11.8 years from one of four Dutch forensic psychiatric hospitals. Notable was the high rate of mortality (17.9%) and readmission to psychiatric settings (11.5%) after discharge. Official reconviction data could be retrieved from the Ministry of Justice and Security for 71 women. Twenty-four women (33.8%) were reconvicted after discharge, including 13 for violent offenses (18.3%). Overall, predictive validity was moderate for all types of recidivism, but low for violence. The START Vulnerability scores, HCR-20V3, and FAM showed the highest predictive accuracy for all recidivism. With respect to violent recidivism, only the START Vulnerability scores and the Clinical scale of the HCR-20V3 demonstrated significant predictive accuracy.
MULTIFILE
The goal of UPIN is to develop and evaluate a scalable distributed system that enables users to cryptographically verify and easily control the paths through which their data travels through an inter-domain network like the Internet, both in terms of router-to-router hops as well as in terms of router attributes (e.g., their location, operator, security level, and manufacturer). UPIN will thus provide the solution to a very relevant and current problem, namely that it is becoming increasingly opaque for users on the Internet who processes their data (e.g., in terms of service providers their data passes through as well as what jurisdictions apply) and that they have no control over how it is being routed. This is a risk for people’s privacy (e.g., a malicious network compromising a user’s data) as well as for their safety (e.g., an untrusted network disrupting a remote surgery). Motivating examples in which (sensitive) user data typically travels across the Internet without user awareness or control are: - Internet of Things for consumers: sensors such as sleep trackers and light switches that collect information about a user’s physical environment and send it across the Internet to remote services for analysis. - Medical records: health care providers requiring medical information (e.g., health records of patients or remote surgery telemetry) to travel between medical institutions according to specified agreements. - Intelligent transport systems: communication plays a crucial role in future autonomous transportation systems, for instance to avoid freight drones colliding or to ensure smooth passing of trucks through busy urban areas. The UPIN project is novel in three ways: 1. UPIN gives users the ability to control and verify the path that their data takes through the network all the way to the destination endpoint, both in terms of hops and attributes of routers traversed. UPIN accomplishes this by adding and improving remote attestation techniques for on-path routers to existing path verification mechanisms, and by adopting and further developing in-packet path selection directives for control. 2. We develop and simulate data and control plane protocols and router extensions to include the UPIN system in inter-domain networking systems such as IP (e.g., using BGP and segment routing) and emerging systems such as SCION and RINA. 3. We evaluate the scalability and performance of the UPIN system using a multi-site testbed of open programmable P4 routers, which is necessary because UPIN requires novel packet processing functions in the data plane. We validate the system using the earlier motivating examples as use cases. The impact we target is: - Increased trust from users (individuals and organizations) in network services because they are able to verify how their data travels through the network to the destination endpoint and because the UPIN APIs enable novel applications that use these network functions. - More empowered users because they are able to control how their data travels through inter-domain networks, which increases self-determination, both at the level of individual users as well as at the societal level.