While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented
MULTIFILE
Using the latest industrial robot technology, the collaborative robot (cobot), industrial manufacturers work towards high-mix low-volume production systems that could satisfy a diversifying customer demand. As the utilization of the cobot’s potential depends on the dynamic interaction with operators, one would expect HR professionals to play a central role in this implementation process. However, cobot-related literature is unanimous: HR is not involved. This is in line with the results of our study in 2019 on seventeen cobot experiments in Dutch industrial manufacturing companies. To explore what human cobot collaboration emerges when engineers and line managers take the lead in their design, we revisited the data from our previous interview study (N=53). HR was absent in all implementations. We found that line managers and engineers prepared operators for rigid human-cobot collaborations that were aimed at getting the cobot to work, enhancing production efficiency and handling a few batches of mass-produced goods (low-mix, high-volume). Furthermore, the collaborations all showed signs of being difficult to sustain over time and posed a direct threat to operators’ well-being. To protect operators’ future of work and build towards interdependent human-cobot collaboration suitable for high-mix low-volume production, we propose an approach in which operators themselves, and HR too, are much more involved in the cobot implementation process. Operators should be allowed and supported to design, program, operate, and repair as much of their human-cobot workstations themselves as possible. To support this, HR has to familiarize itself with the cobot technology, secure operators’ decision latitude, facilitate the required support, and become the work design expert that helps operators co-design sustainable cobot applications that optimally utilize the strengths of both man and machine.
MULTIFILE
Behaviour Change Support Systems (BCSS), already running for the 10th time at Persuasive Technology, is a workshop that builds around the concept of systems that are specifically designed to help and support behaviour change in individuals or groups. The highly multi-disciplinary nature of designing and implementing behaviour change strategies and systems for the strategies has been in the forefront of this workshop from the very beginning. The persuasive technology field is becoming a linking pin connecting natural and social sciences, requiring a holistic view on persuasive technologies, as well as multi-disciplinary approach for design, implementation, and evaluation. So far, the capacities of technologies to change behaviours and to continuously monitor the progress and effects of interventions are not being used to its full potential. The use of technologies as persuaders may shed a new light on the interaction process of persuasion, influencing attitudes and behaviours. Yet, although human- computer interaction is social in nature and people often do see computers as social actors, it is still unknown how these interactions re-shape attitude, beliefs, and emotions, or how they change behaviour, and what the drawbacks are for persuasion via technologies. Humans re-shape technology, changing their goals during usage. This means that persuasion is not a static ad hoc event but an ongoing process. Technology has the capacity to create smart (virtual) persuasive environments that provide simultaneously multimodal cues and psycho-physiological feedback for personal change by strengthening emotional, social, and physical presence. An array of persuasive applications has been developed over the past decade with an aim to induce desirable behaviour change. Persuasive applications have shown promising results in motivating and supporting people to change or adopt new behaviours and attitudes in various domains such as health and wellbeing, sustainable energy, education, and marketing. This workshop aims at connecting multidisciplinary researchers, practitioners and experts from a variety of scientific domains, such as information sciences, human-computer interaction, industrial design, psychology and medicine. This interactive workshop will act as a forum where experts from multiple disciplines can present their work, and can discuss and debate the pillars for persuasive technology.
MULTIFILE
With increasing penetration rates of driver assistance systems in road vehicles, powerful sensing and processing solutions enable further automation of on-road as well as off-road vehicles. In this maturing environment, SMEs are stepping in and education needs to align with this trend. By the input of student teams, HAN developed a first prototype robot platform to test automated vehicle technology in dynamic road scenarios that include VRUs (Vulnerable Road Users). These robot platforms can make complex manoeuvres while carrying dummies of typical VRUs, such as pedestrians and bicyclists. This is used to test the ability of automated vehicles to detect VRUs in realistic traffic scenarios and exhibit safe behaviour in environments that include VRUs, on public roads as well as in restricted areas. Commercially available VRU-robot platforms are conforming to standards, making them inflexible with respect to VRU-dummy design, and pricewise they are far out of reach for SMEs, education and research. CORDS-VTS aims to create a first, open version of an integrated solution to physically emulate traffic scenarios including VRUs. While analysing desired applications and scenarios, the consortium partners will define prioritized requirements (e.g. robot platform performance, dummy types and behaviour, desired software functionality, etc.). Multiple robots and dummies will be created and practically integrated and demonstrated in a multi-VRU scenario. The aim is to create a flexible, upgradeable solution, published fully in open source: The hardware (robot platform and dummies) will be published as well-documented DIY (do-it-yourself) projects and the accompanying software will be published as open-source projects. With the CORDS-VTS solution, SME companies, researchers and educators can test vehicle automation technology at a reachable price point and with the necessary flexibility, enabling higher innovation rates.
De docent/onderzoeker rol is de belangrijkste, echter ook minst goed gefaciliteerde, rol binnen de hogeschool. De docent/onderzoeker moet continue schakelen tussen de onderwijs-urgentie (teamleider) en de langere termijn onderzoeksprioriteit (lector). De docent/onderzoeker heeft praktisch gezien twee werkgevers. Het RAAK-Postdoc project HENC beoogd een pragmatische grondlegger te ontwikkelen voor de duurzame inbedding van PhDs in deze docent/onderzoeker rol. Henk Kortier fungeert hierbij als initiator, (mede) ontwikkelaar en eerste (proef-)persoon. Het onderzoek dat onderdeel vormt van deze aanvraag beoogt de valorisatie van het op 09-feb-2018 afgesloten biomedisch wetenschappelijk PhD onderzoek van Henk Kortier. De modulaire robotica technieken die Henk gaat door ontwikkelen hebben spin-off naar de drie Saxion onderzoek domeinen Area’s & Living (drones), Smart Industry (grondrobots) en Health & Wellbeing (opruimrobot). De onderwijsactiviteiten richten zich op een, nieuw te ontwikkelen, module binnen de opleiding mechatronica, met als doel concrete invulling te geven aan de noodzakelijke vernieuwing en integratie van onderzoek en onderwijs. Met het onderwijs en onderzoeksteam van mechatronica is hierover op 23 april jl. een inventarisatie workshop gehouden, ondersteund door de teamleider onderwijs en lector. Door een matrix-analyse zijn de belangrijkste punten gedefinieerd en worden de belangrijkste redenen voor PhD om als docent/onderzoeker te blijven fungeren ontwikkeld, getest, uitgevoerd en uitgerold. Op deze wijze geeft het project concreet invulling aan het Saxion beleid om PhDs te kunnen laten werken aan het onderzoek en via onderwijsvernieuwing de resultaten naar onderwijs vloeien. Naast de onderwijs-onderzoeks integratie component wordt er binnen de module een lespakket ontwikkeld ter behoeve van het autonoom functionerende robots. Dit pakket wordt ontwikkeld vanuit zowel een operator als engineering oogpunt en zal derhalve de opleiding mechatronica overstijgen. Dit maakt het pakket breed inzetbaar binnen de verschillende opleidingen van de academie Life Science, engineering and Design en Creative Technologievan Saxion maar ook voor hogescholen elders.
Brandweermensen lopen het meeste gevaar als ze onder tijdsdruk een gebouw moeten verkennen, of een brand moeten blussen terwijl de situatie nog niet goed kan worden overzien. Omvallende muren, instortende plafonds of gewoon gestruikeld over door de rook onzichtbare brokstukken leiden tot vermijdbare letsels of zelfs slachtoffers. Met name de inzet bij branden in stedelijke parkeergarages onder woontorens vormen een enorm risico. Het inzetten van onbemande, op afstand bestuurbare voertuigen voor verkenning en bluswerk is een oplossing die binnen de brandweer breed wordt gedragen. De brandweer moet deze innovatieve technologie echter zien te omarmen. Zij werken nu vanuit hun intuïtie en weten direct hoe te acteren op basis van wat zij waarnemen. Praktijkgericht onderzoek heeft echter uitgewezen dat scepsis over de inzet van blusplatforms bij incidenten plaats heeft gemaakt voor zeker vertrouwen. Een blusplatform, voorzien van juiste sensoren kan de Officier van Dienst (OVD) ondersteunen bij het nemen van een beslissing om al dan niet tot een ‘aanval’ over te gaan. Praktijktesten hebben echter laten zien dat de huidige blusplatforms nog niet optimaal functioneren om als volwaardig ‘teamlid’ te kunnen worden ingezet. Dit heeft enerzijds met technologische ontwikkelingen (sensoren en communicatieverbindingen) te maken, maar anderzijds moet de informatievoorziening (human-machine interfacing) naar de brandweer beter worden afgestemd. In dit project gaan Saxion, het instituut fysieke veiligheid, de universiteit Twente, het bedrijfsleven en vijf veiligheidsregio’s onderzoeken hoe en wanneer innovatieve blusplatforms op een intuïtieve manier kunnen worden ingezet door training én (kleine) productaanpassing zodat deze een volwaardig onderdeel kunnen zijn van het brandweerkorps. Een blusplatform kan letselschade en slachtoffers voorkomen, mits goed ingezet en vertrouwd door de mensen die daarvan afhankelijk zijn. Het vak van brandweer, als beroeps of vrijwilliger, is een van de gevaarlijkste die er is. Laten we er samen voor zorgen dat het iets veiliger kan worden.