Project Mario Lectoraat Mechatronica
MULTIFILE
Do we dare to explore the hypothesis that technology shouldn't necessarily play the main role in our human future? It's time to face this discrepancy. Technology became our faith, but it is certainly not a joyful faith. With every new "solution", comes the need for new "solutions" to mitigate the previously undetected unwanted side effects. It's like an arms race, a technology race. Because unlike traditional religions, global tech religion creates matter. Even a virtual world (the metaverse) is material. The man-made mass (textile, plastic, asphalt, concrete, glass, etc.) already weighs 1.2 times the mass of all organic material on earth (all trees, animals, etc.). Every new pollution requires heavier treatment, every dike breach requires heavier dikes. It won't end until we stop leaving to “think different” (Apple) to technology. In the article it is argued that the Inner Development Goals provide a framework fthrough 5 psychological factors - being, thinking, relation to the world, collaboration and adapting - to tackle the sustainability problems.
MULTIFILE
Dutch industrial manufacturers are confronted a new and promising industrial robot: the collaborative robot (cobot). These small robotic arms are revolutionary as they allow direct and safe interaction with production workers for the very first time. The direct interaction between production worker and cobot has the potential to not only increase efficiency, but also enhance flexibility as it can align the strengths of (wo)man and machine more thoroughly. Currently, Dutch manufacturers are experimenting with cobots. To obtain a first understanding about the use of cobots in Dutch industrial practice and what the consequences are for operators and production work, we conducted an exploratory interview study (N=61). We learnt that most cobots under study are used for the production of one or a few large product batches (mass production) and work highly autonomous. The interaction between cobot and production worker is limited and reduced to operators preventing the cobot from falling into a standstill. The results tend to be in line with traditional industrial automation practices: an overemphasis on leveraging the technology’s potential and limited attention for the production workers’ work design and decision latitude. HR professionals were not involved and, therefore, miss out on a crucial opportunity to be of an added value.
MULTIFILE
Flying insects like dragonflies, flies, bumblebees are able to couple hovering ability with the ability for a quick transition to forward flight. Therefore, they inspire us to investigate the application of swarms of flapping-wing mini-drones in horticulture. The production and trading of agricultural/horticultural goods account for the 9% of the Dutch gross domestic product. A significant part of the horticultural products are grown in greenhouses whose extension is becoming larger year by year. Swarms of bio-inspired mini-drones can be used in applications such as monitoring and control: the analysis of the data collected enables the greenhouse growers to achieve the optimal conditions for the plants health and thus a high productivity. Moreover, the bio-inspired mini-drones can detect eventual pest onset at plant level that leads to a strong reduction of chemicals utilization and an improvement of the food quality. The realization of these mini-drones is a multidisciplinary challenge as it requires a cross-domain collaboration between biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. Moreover a co-creation based collaboration will be established with all the stakeholders involved. With this approach we can integrate technical and social-economic aspects and facilitate the adoption of this new technology that will make the Dutch horticulture industry more resilient and sustainable.
Agricultural/horticultural products account for 9% of Dutch gross domestic product. Yearly expansion of production involves major challenges concerning labour costs and plant health control. For growers, one of the most urgent problems is pest detection, as pests cause up to 10% harvest loss, while the use of chemicals is increasingly prohibited. For consumers, food safety is increasingly important. A potential solution for both challenges is frequent and automated pest monitoring. Although technological developments such as propeller-based drones and robotic arms are in full swing, these are not suitable for vertical horticulture (e.g. tomatoes, cucumbers). A better solution for less labour intensive pest detection in vertical crop horticulture, is a bio-inspired FW-MAV: Flapping Wings Micro Aerial Vehicle. Within this project we will develop tiny FW-MAVs inspired by insect agility, with high manoeuvrability for close plant inspection, even through leaves without damage. This project focusses on technical design, testing and prototyping of FW-MAV and on autonomous flight through vertically growing crops in greenhouses. The three biggest technical challenges for FW-MAV development are: 1) size, lower flight speed and hovering; 2) Flight time; and 3) Energy efficiency. The greenhouse environment and pest detection functionality pose additional challenges such as autonomous flight, high manoeuvrability, vertical take-off/landing, payload of sensors and other equipment. All of this is a multidisciplinary challenge requiring cross-domain collaboration between several partners, such as growers, biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. In this project a co-creation based collaboration is established with all stakeholders involved, integrating technical and biological aspects.