Economische impact World Rowing Championships 2014 Van 24 tot 31 augustus 2014 vond op de Bosbaan in Amsterdam de World Rowing Championships (WRC) plaats. Met het oog op de verdere ontwikkeling van het evenement wil de World Rowing Federation (FISA inzicht krijgen in de economische impact van dit evenement. Zij heeft de Hogeschool van Amsterdam in samenwerking met Hogeschool Inholland en Sport2B gevraagd hier onderzoek naar te doen. Daarnaast heeft de FISA enkele aanvullende vragen geformuleerd over de tevredenheid van bezoekers en vrijwilligers. Bezoekers Het bezoekersaantal wordt geschat op 40.000, waarvan 30.000 unieke bezoekers. Buitenlandse bezoekers besteedden gemiddeld 77 euro per dag, Nederlandse bezoekers 27 euro en Amsterdamse bezoekers 20 euro. De bezoekers waren goed voor 28.500 overnachtingen in de dagen rondom het evenement. De totale bestedingsimpuls gerealiseerd door bezoekers bedroeg 3,1 miljoen. Deelnemers In totaal namen 1.800 atleten en begeleiders deel aan het evenement. Conservatief geschat gaven de deelnemers gemiddeld 25 euro per dag uit. De totale additionele uitgaven van atleten en begeleiders komen daarmee op 534.000 euro. In totaal waren de atleten goed voor 19.500 overnachtingen. De totale uitgaven voor de accommodatie komen daarmee op meer dan 2 miljoen euro. Zes nationale teams hebben als voorbereiding op WRC in juni deelgenomen aan de International Rowing Regatta Amsterdam (IRRA), dit genereerde een lokale economische impact van 149.000 euro. De totale bestedingsimpuls gerealiseerd door deelnemers bedroeg 2,7 miljoen euro. Organisatie en media Het saldo van in- en uitgaande geldstromen veroorzaakt door de organisatie en de media bedroeg 0,8 miljoen euro. De totale directe en indirecte economische impact: 9,2 miljoen euro.
DOCUMENT
Mechanical power output is a key performance-determining variable in many cyclic sports. In rowing, instantaneous power output is commonly determined as the dot product of handle force moment and oar angular velocity. The aim of this study was to show that this commonly used proxy is theoretically flawed and to provide an indication of the magnitude of the error. To obtain a consistent dataset, simulations were performed using a previously proposed forward dynamical model. Inputs were previously recorded rower kinematics and horizontal oar angle, at 20 and 32 strokes∙min−1. From simulation outputs, true power output and power output according to the common proxy were calculated. The error when using the common proxy was quantified as the difference between the average power output according to the proxy and the true average power output (P̅residual), and as the ratio of this difference to the true average power output (ratiores./rower). At stroke rate 20, P̅residual was 27.4 W and ratiores./rower was 0.143; at stroke rate 32, P̅residual was 44.3 W and ratiores./rower was 0.142. Power output in rowing appears to be underestimated when calculated according to the common proxy. Simulations suggest this error to be at least 10% of the true power output.
DOCUMENT
In this study, the effect of strapping rowers to their sliding seat on performance during 75 m on-water starting trials was investigated. Well-trained rowers performed 75 m maximum-effort starts using an instrumented single scull equipped with a redesigned sliding seat system, both under normal conditions and while strapped to the sliding seat. Strapping rowers to their sliding seat resulted in a 0.45 s lead after 75 m, corresponding to an increase in average boat velocity of about 2.5%. Corresponding effect sizes were large. No significant changes were observed in general stroke cycle characteristics. No indications of additional boat heaving and pitching under strapped conditions were found. The increase in boat velocity is estimated to correspond to an increase in average mechanical power output during the start of on-water rowing between 5% and 10%, which is substantial but smaller than the 12% increase found in a previous study on ergometer starting. We conclude that, after a very short period of adaptation to the strapped condition, single-scull starting performance is substantially improved when the rower is strapped to the sliding seat.
DOCUMENT
The World Rowing Championships (WRC) took place at Amsterdam’s Bosbaan from 24 to 31 August 2014. In organising this event, the World Rowing Federation (FISA) raised the bar for world class rowing events. Athletes, spectators, sponsors and rowing fans around the world followed the event on different media platforms. Those who were able to attend in person enjoyed an exciting sporting competition, as well as Amsterdam’s scenic sites and festive atmosphere. Behind the scenes, hundreds of volunteers worked to make this event possible.
DOCUMENT
The purpose of this study was to assess predictive value of a new submaximal rowing test (SmRT) on 2,000-m ergometer rowing time-trial performance in competitive rowers. In addition, the reliability of the SmRT was investigated. Twenty-four competitive male rowers participated in this study. After determining individual HRmax, all rowers performed an SmRT followed by a 2,000-m rowing ergometer time trial. In addition, the SmRT was performed 4 times (2 days in between) to determine the reliability. The SmRT consists of two 6-minute stages of rowing at 70 and 80% HRmax, followed by a 3-minute stage at 90% HRmax. Power was captured during the 3 stages, and 60 seconds of heart rate recovery (HRR60s) was measured directly after the third stage. Results showed that predictive value of power during the SmRT on 2,000-m rowing time also increased with stages. CVTEE% is 2.4, 1.9, and 1.3%. Pearson correlations (95% confidence interval [95% CI]) were −0.73 (−0.88 to −0.45), −0.80 (−0.94 to −0.67), and −0.93 (−0.97 to −0.84). 2,000-m rowing time and HRR60s showed no relationship. Reliability of power during the SmRT improved with the increasing intensity of the stages. The coefficient of variation (CVTEM%) was 9.2, 5.6, and 0.4%. Intraclass correlation coefficients (ICC) and 95% CI were 0.91 (0.78–0.97), 0.92 (0.81–0.97), and 0.99 (0.97–1.00). The CVTEM% and ICC of HRR60s were 8.1% and 0.93 (0.82–0.98). In conclusion, the data of this study shows that the SmRT is a reliable test that it is able to accurately predict 2,000-m rowing time on an ergometer. The SmRT is a practical and valuable submaximal test for rowers, which can potentially assist with monitoring, fine-tuning and optimizing training prescription in rowers.
LINK
To analyze on-water rowing performance, a valid determination of the power loss due to the generation of propulsion is required. This power los can be calculated as the dot product of the net water force vector ( ~ F w;o ) and the time derivative of the position vector of the point at the blade where ~ F w;o is applied (~r PoA = w ). In this article we presented a method that allows for accurate determination of both parameters using a closed system of three rotational equations of motion for three different locations at the oar. Additionally, the output of the method has been validated. An oar was instrumented with three pairs of strain gauges measuring local strain. Force was applied at different locations of the blade, while the oar was fixed at the oarlock and the end of the handle. Using a force transducer and kinematic registration, the force vector at the blade and the deflection of the oar were measured. These data were considered to be accurate and used to calibrate the measured strain for bending moments, the deflection of the oar and the angle of the blade relative to its unloaded position. Additionally, those data were used to validate the output values of the presented method plus the associated instantaneous power output. Good correspondence was found between the estimated perpendicular blade force and its reference (ICC = .999), while the parallel blade force could not be obtained (ICC = .000). The position of the PoA relative to the blade could be accurately obtained when the perpendicular force was 5.3 N (ICC = .927). Instantaneous power output values associated with the perpendicular force could be obtained with reasonable accuracy (ICC = .747). These results suggest that the power loss due to the perpendicular water force component can be accurately obtained, while an additional method is required to obtain the power losses due to the parallel force.
DOCUMENT
Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.
DOCUMENT
Abstract: BACKGROUND: Rowing is a popular sport for students in the Netherlands. First-year students have to deal with a substantial increase of training exposure during their rowing season. The aim of this study was to investigate the training characteristics and the occurrence of injuries and illnesses in the freshman rowers.
DOCUMENT