This study offers an overview of the natural development of the use of an activity tracker, as well as the relative importance of a range of determinants from literature. Decay is exponential but slower than may be expected from existing literature. Many factors have a small contribution to sustained use. The most important determinants are technical condition, age, user experience, and goal-related factors. This finding suggests that activity tracking is potentially beneficial for a broad range of target groups, but more attention should be paid to technical and user experience–related aspects of activity trackers.
MULTIFILE
Introduction: Many adults do not reach the recommended physical activity (PA) guidelines, which can lead to serious health problems. A promising method to increase PA is the use of smartphone PA applications. However, despite the development and evaluation of multiple PA apps, it remains unclear how to develop and design engaging and effective PA apps. Furthermore, little is known on ways to harness the potential of artificial intelligence for developing personalized apps. In this paper, we describe the design and development of the Playful data-driven Active Urban Living (PAUL): a personalized PA application.Methods: The two-phased development process of the PAUL apps rests on principles from the behavior change model; the Integrate, Design, Assess, and Share (IDEAS) framework; and the behavioral intervention technology (BIT) model. During the first phase, we explored whether location-specific information on performing PA in the built environment is an enhancement to a PA app. During the second phase, the other modules of the app were developed. To this end, we first build the theoretical foundation for the PAUL intervention by performing a literature study. Next, a focus group study was performed to translate the theoretical foundations and the needs and wishes in a set of user requirements. Since the participants indicated the need for reminders at a for-them-relevant moment, we developed a self-learning module for the timing of the reminders. To initialize this module, a data-mining study was performed with historical running data to determine good situations for running.Results: The results of these studies informed the design of a personalized mobile health (mHealth) application for running, walking, and performing strength exercises. The app is implemented as a set of modules based on the persuasive strategies “monitoring of behavior,” “feedback,” “goal setting,” “reminders,” “rewards,” and “providing instruction.” An architecture was set up consisting of a smartphone app for the user, a back-end server for storage and adaptivity, and a research portal to provide access to the research team.Conclusions: The interdisciplinary research encompassing psychology, human movement sciences, computer science, and artificial intelligence has led to a theoretically and empirically driven leisure time PA application. In the current phase, the feasibility of the PAUL app is being assessed.
Over the past few years the tone of the debate around climate change has shifted from sceptical to soberingly urgent as the global community has prioritised the research into solutions which will mitigate greenhouse gas emissions. So far this research has been insufficient. One of the major problems for driving public and private stakeholders to implement existing solutions and research new ones is how we communicate about climate change (Stoknes, 2014). There seems to be a lack of common language that drives the scientific community away from policymakers and the public. Due to this lack, it is hard to translate findings into viable and sustainable solutions and to adopt new climate-neutral economies and habits.
MULTIFILE