Background: This paper presents the findings of a pilot research survey which assessed the degree of balance between safety and productivity, and its relationship with awareness and communication of human factors and safety rules in the aircraft manufacturing environment.Methods: The study was carried out at two Australian aircraft manufacturing facilities where a Likertscale questionnaire was administered to a representative sample. The research instrument included topics relevant to the safety and human factors training provided to the target workforce. The answers were processed in overall, and against demographic characteristics of the sample population.Results: The workers were sufficiently aware of how human factors and safety rules influence their performance and acknowledged that supervisors had adequately communicated such topics. Safety and productivity seemed equally balanced across the sample. A preference for the former over the latter wasassociated with a higher awareness about human factors and safety rules, but not linked with safety communication. The size of the facility and the length and type of employment were occasionally correlated with responses to some communication and human factors topics and the equilibrium between productivity and safety.Conclusion: Although human factors training had been provided and sufficient bidirectional communication was present across the sample, it seems that quality and complexity factors might have influencedthe effects of those safety related practices on the safety-productivity balance for specific parts of the population studied. Customization of safety training and communication to specific characteristics of employees may be necessary to achieve the desired outcomes.
DOCUMENT
In the aviation sector, communication problems have contributed into 70% to 80% of safety occurrences. However, to date we haven’t depicted which communication aspects have affected aviation safety most frequently.Based on literature, we developed a tool which includes communication characteristics related to actors, signal, coder, channel, decoder, direction, timing, distance, predictability and interference. After achieving inter-rater reliability, the tool was used to analyse 103 safety investigation reports that correspond to events occurred in various regions and which included in total 256 communication problems. The results suggest that communication between humans and representation media, visual and audio signalling and decoding, air-transmitted messages, and verbal, unidirectional, local and synchronous communication contributed most frequently into safety events. Statistical tests showed that the frequencies of most of those characteristics were significantly different across regions, time periods, types of operations and event severity.The tool developed can be used by different organizations and industry sectors to distil and analyse data from mandatory and voluntary reports and identify weak communication areas. Depending on the findings, analysts might need to alert designers of technical systems, inform management of organizations, warn end-users about most frequent pitfalls, modify/enrich communication training and steer research efforts.
DOCUMENT
This dissertation describes a research project about the communication between communication vulnerable people and health care professionals in long-term care settings. Communication vulnerable people experience functional communication difficulties in particular situations, due to medical conditions. They experience difficulties expressing themselves or understanding professionals, and/or professionals experience difficulties understanding these clients. Dialogue conversations between clients and professionals in healthcare, which for example concern health-related goals, activity and participation choices, diagnostics, treatment options, and treatment evaluation, are, however, crucial for successful client-centred care and shared decision making. Dialogue conversations facilitate essential exchanges between clients and healthcare professionals, and both clients and professionals should play a significant role in the conversation. It is unknown how communication vulnerable people and their healthcare professionals experience dialogue conversations and what can be done to support successful communication in these conversations. The aim of this research is to explore how communication vulnerable clients and professionals experience their communication in dialogue conversations in long-term care and how they can best be supported in improving their communication in these conversations.
DOCUMENT
The traffic safety of cyclists is under pressure. The number of fatalities and injuries is increasing, and the number of single-bicycle accidents is on the rise. However, from a traffic safety perspective, the most concerning trend is the growing number of incidents between motorized vehicles and cyclists. In addition to infrastructural solutions, such as more segregated and wider bike lanes, both industry and government are exploring technological developments to better safeguard cyclist safety. One of the technological solutions being considered is the use of C-V2X communication. C-V2X, Cellular Vehicle-to-X, is a technology that enables short-range signal exchanges between road users, informing them of each other's presence. C-V2X can be used, for example, to alert drivers via dedicated in-car information systems about the presence of cyclists on the road (e.g. at crossings). Although the technology and chipsets have been developed, the application of C-V2X to improve cyclist safety has not yet been thoroughly investigated. Therefore, HAN, Gazelle, and ARK Infomotives are researching the impact of C-V2X (on cyclist safety). Using advanced simulations with a digital twin in an urban environment and rural environment, the study will analyze how drivers respond to cyclist presence signals and determine the maximum penetration rate of ‘connected’ cyclists. Based on this, a pilot study will be conducted in a controlled environment on HAN terrain to validate the direction of the simulation results. The project aligns with the Missiegedreven Innovatiebeleid and the KIA Sleuteltechnologieën, specifically within application of digital and information technologies. This proposal aligns with the innovation domain of Semiconductor Technologies by applying advanced sensor and digital connectivity solutions to enhance cyclist safety. The project fits within the theme of Sleuteltechnologieën en Duurzame Materialen of the strategic research agenda of the VH by utilizing digital connectivity, sensor fusion, and data-driven decision-making for safer mobility solutions.
The project aims to improve palliative care in China through the competence development of Chinese teachers, professionals, and students focusing on the horizontal priority of digital transformation.Palliative care (PC) has been recognised as a public health priority, and during recent years, has seen advances in several aspects. However, severe inequities in the access and availability of PC worldwide remain. Annually, approximately 56.8 million people need palliative care, where 25.7% of the care focuses on the last year of person’s life (Connor, 2020).China has set aims for reaching the health care standards of the developed countries by 2030 through the Healthy China Strategy 2030, where one of the improvement areas in health care includes palliative care, thus continuing the previous efforts.The project provides a constructive, holistic, and innovative set of actions aimed at resulting in lasting outcomes and continued development of palliative care education and services. Raising the awareness of all stakeholders on palliative care, including the public, is highly relevant and needed. Evidence based practice guidelines and education are urgently required for both general and specialised palliative care levels, to increase the competencies for health educators, professionals, and students. This is to improve the availability and quality of person-centered palliative care in China. Considering the aging population, increase in various chronic illnesses, the challenging care environment, and the moderate health care resources, competence development and the utilisation of digitalisation in palliative care are paramount in supporting the transition of experts into the palliative care practice environment.General objective of the project is to enhance the competences in palliative care in China through education and training to improve the quality of life for citizens. Project develops the competences of current and future health care professionals in China to transform the palliative care theory and practice to impact the target groups and the society in the long-term. As recognised by the European Association for Palliative Care (EAPC), palliative care competences need to be developed in collaboration. This includes shared willingness to learn from each other to improve the sought outcomes in palliative care (EAPC 2019). Since all individuals have a right to health care, project develops person-centered and culturally sensitive practices taking into consideration ethics and social norms. As concepts around palliative care can focus on physical, psychological, social, or spiritual related illnesses (WHO 2020), project develops innovative pedagogy focusing on evidence-based practice, communication, and competence development utilising digital methods and tools. Concepts of reflection, values and views are in the forefront to improve palliative care for the future. Important aspects in project development include health promotion, digital competences and digital health literacy skills of professionals, patients, and their caregivers. Project objective is tied to the principles of the European Commission’s (EU) Digital Decade that stresses the importance of placing people and their rights in the forefront of the digital transformation, while enhancing solidarity, inclusion, freedom of choice and participation. In addition, concepts of safety, security, empowerment, and the promotion of sustainable actions are valued. (European Commission: Digital targets for 2030).Through the existing collaboration, strategic focus areas of the partners, and the principles of the call, the PalcNet project consortium was formed by the following partners: JAMK University of Applied Sciences (JAMK ), Ramon Llull University (URL), Hanze University of Applied Sciences (HUAS), Beijing Union Medical College Hospital (PUMCH), Guangzhou Health Science College (GHSC), Beihua University (BHU), and Harbin Medical University (HMU). As project develops new knowledge, innovations and practice through capacity building, finalisation of the consortium considered partners development strategy regarding health care, (especially palliative care), ability to create long-term impact, including the focus on enhancing higher education according to the horizontal priority. In addition, partners’ expertise and geographical location was also considered important to facilitate long-term impact of the results.Primary target groups of the project include partner country’s (China) staff members, teachers, researchers, health care professionals and bachelor level students engaging in project implementation. Secondary target groups include those groups who will use the outputs and results and continue in further development in palliative care upon the lifetime of the project.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.