Although reengineering is strategically advantageous fororganisations in order to keep functional and sustainable, safety must remain apriority and respective efforts need to be maintained. This paper suggeststhe combination of soft system methodology (SSM) and Pareto analysison the scope of safety management performance evaluation, and presents theresults of a survey, which was conducted in order to assess the effectiveness,efficacy and ethicality of the individual components of an organisation’s safetyprogram. The research employed quantitative and qualitative data and ensureda broad representation of functional managers and safety professionals, whocollectively hold the responsibility for planning, implementing and monitoringsafety practices. The results showed that SSM can support the assessment ofsafety management performance by revealing weaknesses of safety initiatives,and Pareto analysis can underwrite the prioritisation of the remedies required.The specific methodology might be adapted by any organisation that requires adeep evaluation of its safety management performance, seeks to uncover themechanisms that affect such performance, and, under limited resources, needsto focus on the most influential deficiencies.
This paper presents the findings from a ‘Safety Differently’ (SD) case study in aviation, and specifically in a maintenance, repair and overhaul (MRO) organisation in Southeast Asia. The goal of the case study was to apply a new method of safety intervention that is part of the Safety Differently toolkit and utilises a bottom-up approach. This research tested the extent to which these interventions could be embedded into a continuous improvement program in a highly controlled environment, namely an Aviation MRO. The interventions (called micro-experiments, ME) are considered as a flexible tool, which allows testing of process improvements in a safe to fail way, empowering the lower levels of the organisation, challenging safety related issues and revealing key areas in need of transformation. The ideas for the interventions considered in the case study were retrieved from interviews conducted with 50 mechanics, and include issues to address aviation safety and occupational health as well as quality. We elected to include all three categories in this study as the ME approach is applicable to all of these. This MRO case study showcases the benefits and limitations of the ME in aviation, revealing the conditions under which it may become useful. Future studies should further explore the role of complex and heavily controlled industries in similar bottom up approaches, so that interventions can become part of a continuous improvement plan.
Phosphorus is an essential element for life, whether in the agricultural sector or in the chemical industry to make products such as flame retardants and batteries. Almost all the phosphorus we use are mined from phosphate rocks. Since Europe scarcely has any mine, we therefore depend on imported phosphate, which poses a risk of supply. To that effect, Europe has listed phosphate as one of its main critical raw materials. This creates a need for the search for alternative sources of phosphate such as wastewater, since most of the phosphate we use end up in our wastewater. Additionally, the direct discharge of wastewater with high concentration of phosphorus (typically > 50 ppb phosphorus) creates a range of environmental problems such as eutrophication . In this context, the Dutch start-up company, SusPhos, created a process to produce biobased flame retardants using phosphorus recovered from municipal wastewater. Flame retardants are often used in textiles, furniture, electronics, construction materials, to mention a few. They are important for safety reasons since they can help prevent or spread fires. Currently, almost all the phosphate flame retardants in the market are obtained from phosphate rocks, but SusPhos is changing this paradigm by being the first company to produce phosphate flame retardants from waste. The process developed by SusPhos to upcycle phosphate-rich streams to high-quality flame retardant can be considered to be in the TRL 5. The company seeks to move further to a TRL 7 via building and operating a demo-scale plant in 2021/2022. BioFlame proposes a collaboration between a SME (SusPhos), a ZZP (Willem Schipper Consultancy) and HBO institute group (Water Technology, NHL Stenden) to expand the available expertise and generate the necessary infrastructure to tackle this transition challenge.