Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this paper presents: (1) a set of safety requirements generated from the application of the Systems Theoretic Process Analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, and drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights.
DOCUMENT
The continuous increase of accident and incident reports has indicated the potential of drones to threaten public safety. The published regulatory framework for small drones is not visibly based on a comprehensive hazard analysis. Also, a variety in the constraints imposed by different regulatory frameworks across the globe might impede market growth and render small-drone operations even more complicated since light drones might be easily transferred and operated in various regions with diverse restrictions. In our study we applied the Systems-Theoretic Process Analysis (STPA) method to small-drone operations and we generated a first set of Safety Requirements (SR) for the authority, manufacturer, end-user and automation levels. Under the scope of this paper, we reviewed 56 drone regulations published by different authorities, and performed (1) a gap analysis against the 57 SRs derived by STPA for the authority level, and (2) Intra-Class Correlations in order to examine the extent of their harmonization. The results suggest that the regulations studied satisfy 5.3% to 66.7% of the SRs, and they are moderately similar. The harmonization is even lower when considering the range of values of various SRs addressed by the authorities. The findings from the drones’ case show that regulators might not similarly and completely address hazards introduced by new technology; such a condition might affect safety and impede the distribution and use of products in the international market. A timely and harmonized standardization based on a systematic hazard analysis seems crucial for tackling the challenges stemmed from technological advancements, especially the ones available to the public.
DOCUMENT
As part of their SMS, aviation service providers are required to develop and maintain the means to verify the safety performance of their organisation and to validate the effectiveness of safety risk controls. Furthermore, service providers must verify the safety performance of their organisation with reference to the safety performance indicators and safety performance targets of the SMS in support of their organisation’s safety objectives. However, SMEs lack sufficient data to set appropriate safety alerts and targets, or to monitor their performance, and no other objective criteria currently exist to measure the safety of their operations. The Aviation Academy of the Amsterdam University of Applied Sciences therefore took the initiative to develop alternative safety performance metrics. Based on a review of the scientific literature and a survey of existing safety metrics, we proposed several alternative safety metrics. After a review by industry and academia, we developed two alternative metrics into tools to help aviation organisations verify the safety performance of their organisations.The AVAV-SMS tool measures three areas within an organisation’s Safety Management System:• Institutionalisation (design and implementation along with time and internal/external process dependencies).• Capability (the extent to which managers have the capability to implement the SMS).• Effectiveness (the extent to which the SMS deliverables add value to the daily tasks of employees).The tool is scalable to the size and complexity of the organisation, which also makes it useful for small and medium-sized enterprises (SMEs). The AVAS-SCP tool also measures three areas in the organisation’s safety culture prerequisites to foster a positive safety culture:• Organisational plans (whether the company has designed/documented each of the safety cultureprerequisites).• Implementation (the extent to which the prerequisites are realised by the managers/supervisors acrossvarious organisational levels).• Perception (the degree to which frontline employees perceive the effects of managers’ actions relatedto safety culture).We field-tested these tools, demonstrating that they have adequate sensitivity to capture gaps between Work-as-Imagined (WaI) and Work-as-Done (WaD) across organisations. Both tools are therefore useful to organisations that want to self-assess their SMS and safety culture prerequisite levels and proceed to comparisons among various functions and levels and/or over time. Our field testing and observations during the turn-around processes of a regional airline confirm that significant differences exist between WaI and WaD. Although these differences may not automatically be detrimental to safety, gaining insight into them is clearly necessary to manage safety. We conceptually developed safety metrics based on the effectiveness of risk controls. However, these could not be fully field-tested within the scope of this research project. We recommend a continuation of research in this direction. We also explored safety metrics based on the scarcity of resources and system complexity. Again, more research is required here to determine whether these provide viable solutions.
DOCUMENT
The remarkable and continuous growth of the unmanned aircraft market has brought new safety related challenges, as those are recorded in various accident and incident reports. Although drones with an operating weight higher than 20-25Kgs are technologically advanced and often subject to standards (e.g., technical reliability, airspace management, licensing, certification), the regulatory framework for (ultra) light drones focuses almost exclusively on the limitations that the operator needs to consider. Thus, the protection from accidents seems to rely mostly on the competency of the operator to fly a drone safely, and his/her observance of the rules published by the respective authorities. In addition, the hazards lying in the interaction between an operator and a small drone have not been systematically studied. In this paper, we present (1) the first results from a System-Theoretic Process Analysis (STPA) based approach to the identification of hazards and safety requirements in small drone operations, and (2) an adaptation of the Risk Situation Awareness Provision Capability (RiskSOAP) methodology in order to quantify the differences amongst 4 drone models regarding the extent to which they fulfill the safety requirements identified through STPA. The results showed that the drones studied satisfy the safety requirements at low and moderate levels and they present high dissimilarities between them regarding the extent to which they meet the same safety requirements. Future work will include: (a) comparison of a larger sample of small drones against the safety requirements, as well as pairwise, and (b) assessment of the degree to which various regulatory frameworks worldwide address the safety requirements generated with STPA and assigned to the authority level.
DOCUMENT
The inefficiency of maintaining static and long-lasting safety zones in environments where actual risks are limited is likely to increase in the coming decades, as autonomous systems become more common and human workers fewer in numbers. Nevertheless, an uncompromising approach to safety remains paramount, requiring the introduction of novel methods that are simultaneously more flexible and capable of delivering the same level of protection against potentially hazardous situations. We present such a method to create dynamic safety zones, the boundaries of which can be redrawn in real-time, taking into account explicit positioning data when available and using conservative extrapolation from last known location when information is missing or unreliable. Simulation and statistical methods were used to investigate performance gains compared to static safety zones. The use of a more advanced probabilistic framework to further improve flexibility is also discussed, although its implementation would not offer the same level of protection and is currently not recommended.
MULTIFILE
Objectives: Current study explores the potential of the safety rating scale in order to determine the surplus value for evidence based practise. This study wants to contribute to this knowledge gape by exploring the safety scale by analysing the change between two safety ratings. First, the absolute change in safety is investigated. Secondly the study explores to what extent family background characteristics and case management characteristics determine the extent of change in perceived safety. Materials and Methods: The study analysed 105 Dutch child protection cases who had registration files with filled out LIRIK checklist, Action Plan and additional baseline safety and end safety measure as perceived by case managers. Results: On average perceived safety increased from an insufficient level to sufficient level. Significant regression coefficients with larger changes for primary school children (6 - 12 years) and lower changes for children within the ‘socio economic problems cluster’. The results reveal significant vulnerability for preschool children and families attending the socio-economic cluster due to limited improvement. Conclusion: According to this study the safety measure can be of value to outcome monitoring. The safety measure is a practical measure that reflects on the current state of safety within a family according to professionals and can be used on several occasions during case management. In addition, on aggregated level pre and post measures can be analysed for quality management purpose. Further exploration of this measure is needed. Publishers article: https://www.ecronicon.com/ecpe/ECPE-10-00873.php
DOCUMENT
Particulate matter (PM) exposure, amongst others caused by emissions and industrial processes, is an important source of respiratory and cardiovascular diseases. There are situations in which blue-collar workers in roadwork companies are at risk. This study investigated perceptions of risk and mitigation of employees in roadwork (construction and maintenance) companies concerning PM, as well as their views on methods to empower safety behavior, by means of a mental models approach. We held semi-structured interviews with twenty-two employees (three safety specialists, seven site managers and twelve blue-collar workers) in three different roadwork companies. We found that most workers are aware of the existence of PM and reduction methods, but that their knowledge about PM itself appears to be fragmented and incomplete. Moreover, road workers do not protect themselves consistently against PM. To improve safety instructions, we recommend focusing on health effects, reduction methods and the rationale behind them, and keeping workers’ mental models into account. We also recommend a healthy dialogue about work-related risk within the company hierarchy, to alleviate both information-related and motivation-related safety issues. https://doi.org/10.1016/j.ssci.2019.06.043 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
DOCUMENT
The sense of safety and security of older people is a widely acknowledged action domain for policy and practice in age-friendly cities. Despite an extensive body of knowledge on the matter, the theory is fragmented, and a classification is lacking. Therefore, this study investigated how older people experience the sense of safety and security in an age-friendly city. A total of four focus group sessions were organised in The Hague comprising 38 older people. Based on the outcomes of the sessions, the sense of safety and security was classified into two main domains: a sense of safety and security impacted by intentional acts and negligence (for instance, burglary and violence), and a sense of safety and security impacted by non-intentional acts (for instance, incidents, making mistakes online). Both domains manifest into three separate contexts, namely the home environment, the outdoor environment and traffic and the digital environment. In the discussions with older people on these derived domains, ideas for potential improvements and priorities were also explored, which included access to information on what older people can do themselves to improve their sense of safety and security, the enforcement of rules, and continuous efforts to develop digital skills to improve safety online. Original article at MDPI; DOI: https://doi.org/10.3390/ijerph19073960
MULTIFILE
This essay explores the notion of resilience by providing a theoretical context and subsequently linking it to the management of safety and security. The distinct worlds of international security, industrial safety and public security have distinct risks as well as distinct ‘core purposes and integrities’ as understood by resilience scholars. In dealing with risks one could argue there are three broad approaches: cost-benefit analysis, precaution and resilience. In order to distinguish the more recent approach of resilience, the idea of adaptation will be contrasted to mitigation. First, a general outline is provided of what resilience implies as a way to survive and thrive in the face of adversity. After that, a translation of resilience for the management of safety and security is described. LinkedIn: https://www.linkedin.com/in/juul-gooren-phd-cpp-a1180622/
DOCUMENT
Background: Due to the globally increasing demand for care, innovation is important to maintain quality, safety, effectiveness, patient sensitivity, and outcome orientation. Health care technologies could be a solution to innovate, maintain, or improve the quality of care and simultaneously decrease nurses’ workload. Currently, nurses are rarely involved in the design of health care technologies, mostly due to time constraints with clinical nursing responsibilities and limited exposure to technology and design disciplines. To ensure that health care technologies fit into nurses’ core and routine practice, nurses should be actively involved in the design process. Objective: The aim of the present study was to explore the main requirements for nurses’ active participation in the design of health care technologies. Design: An exploratory descriptive qualitative design was used which helps to both understand and describe a phenomenon. Participants: Twelve nurses from three academic hospitals in the Netherlands participated in this study. Method: Data were collected from semistructured interviews with hospital nurses experienced in design programs and thematically analysed. Results: Four themes were identified concerning the main requirements for nurses to participate in the design of health care technologies: (1) nurses’ motivations to participate, (2) the process of technology development, (3) required competence to participate (such as assertiveness, creative thinking, problem solving skills), and (4) facilitating and organizing nurses’ participation. Conclusion: Nurses experience their involvement in the design process as essential, distinctive, and meaningful but experience few possibilities to combine this work with their current workload, flows, routines, and requirements. To participate in the design of health care technologies nurses need motivation and specific competencies. Organizations should facilitate time for nurses to acquire the required competencies and to be intentionally involved in technology design and development activities.
DOCUMENT