MULTIFILE
Boekbespreking Dienen is verdienen van H. Vinkenburg (1990)
In de afgelopen jaren hebben technologische ontwikkelingen de aard van dienstverlening ingrijpend veranderd (Huang & Rust, 2018). Technologie wordt steeds vaker ingezet om menselijke servicemedewerkers te vervangen of te ondersteunen (Larivière et al., 2017; Wirtz et al., 2018). Dit stelt dienstverleners in staat om meer klanten te bedienen met minder werknemers, waardoor de operationele efficiëntie toeneemt (Beatson et al., 2007). Deze operationele efficiëntie leidt weer tot lagere kosten en een groter concurrentievermogen. Ook voor klanten kan de inzet van technologie voordelen hebben, zoals betere toegankelijkheid en consistentie, tijd- en kostenbesparing en (de perceptie van) meer controle over het serviceproces (Curran & Meuter, 2005). Mede vanwege deze beoogde voordelen is de inzet van technologie in service-interacties de afgelopen twee decennia exponentieel gegroeid. De inzet van zogenaamde conversational agents is een van de belangrijkste manieren waarop dienstverleners technologie kunnen inzetten om menselijke servicemedewerkers te ondersteunen of vervangen (Gartner, 2021). Conversational agents zijn geautomatiseerde gesprekspartners die menselijk communicatief gedrag nabootsen (Laranjo et al., 2018; Schuetzler et al., 2018). Er bestaan grofweg drie soorten conversational agents: chatbots, avatars, en robots. Chatbots zijn applicaties die geen virtuele of fysieke belichaming hebben en voornamelijk communiceren via gesproken of geschreven verbale communicatie (Araujo, 2018;Dale, 2016). Avatars hebben een virtuele belichaming, waardoor ze ook non-verbale signalen kunnen gebruiken om te communiceren, zoals glimlachen en knikken (Cassell, 2000). Robots, ten slotte, hebben een fysieke belichaming, waardoor ze ook fysiek contact kunnen hebben met gebruikers (Fink, 2012). Conversational agents onderscheiden zich door hun vermogen om menselijk gedrag te vertonen in service-interacties, maar op de vraag ‘hoe menselijk is wenselijk?’ bestaat nog geen eenduidig antwoord. Conversational agents als sociale actoren Om succesvol te zijn als dienstverlener, is kwalitatief hoogwaardige interactie tussen servicemedewerkers en klanten van cruciaal belang (Palmatier et al., 2006). Dit komt omdat klanten hun percepties van een servicemedewerker (bijv. vriendelijkheid, bekwaamheid) ontlenen aan diens uiterlijk en verbale en non verbale gedrag (Nickson et al., 2005; Specht et al., 2007; Sundaram & Webster, 2000). Deze klantpercepties beïnvloeden belangrijke aspecten van de relatie tussen klanten en dienstverleners, zoals vertrouwen en betrokkenheid, die op hun beurt intentie tot gebruik, mond-tot-mondreclame, loyaliteit en samenwerking beïnvloeden (Hennig-Thurau, 2004; Palmatier et al., 2006).Er is groeiend bewijs dat de uiterlijke kenmerken en communicatieve gedragingen (hierna: menselijke communicatieve gedragingen) die percepties van klanten positief beïnvloeden, ook effectief zijn wanneer ze worden toegepast door conversational agents (B.R. Duffy, 2003; Holtgraves et al., 2007). Het zogenaamde ‘Computers Als Sociale Actoren’ (CASA paradigma vertrekt vanuit de aanname dat mensen de neiging hebben om onbewust sociale regels en gedragingen toe te passen in interacties met computers, ondanks het feit dat ze weten dat deze computers levenloos zijn (Nass et al., 1994). Dit kan verder worden verklaard door het fenomeen antropomorfisme (Epley et al., 2007; Novak & Hoffman, 2019). Antropomorfisme houdt in dat de aanwezigheid van mensachtige kenmerken of gedragingen in niet-menselijke agenten, onbewust cognitieve schema's voor menselijke interactie activeert (Aggarwal & McGill, 2007; M.K. Lee et al., 2010). Door computers te antropomorfiseren komen mensen tegemoet aan hun eigen behoefte aan sociale verbinding en begrip van de sociale omgeving (Epley et al., 2007; Waytz et al., 2010). Dit heeft echter ook tot gevolg dat mensen cognitieve schema’s voor sociale perceptie toepassen op conversational agents.
Wie schapen heeft, heeft wormen. Worminfecties zijn onlosmakelijk verbonden met de schapenhouderij. Een zware wormbesmetting heeft een grote impact op de gezondheid van schapen. Het is dus zaak deze wormen te bestrijden. Veelal wordt dit gedaan met ontwormmiddelen. Echter door veelvuldige gebruik van deze middelen, is er tegen een groot deel inmiddels resistentie ontstaan. De sector is daarom haastig op zoek naar alternatieven voor ontwormen met ontworm middelen. Een van deze alternatieven is omweiden. Dit alternatief wordt in het project 'Internet of Sheep: worm besmetting in de praktijk' onderzocht en verder uitgewerkt. Het project onderzoekt het verband tussen de positie van het schaap via een GPS/LoRa netwerk, de actuele weersomstandigheden vanuit het KNMI en de levenscyclus van een worm. Er wordt vervolgens een systeem ontwikkeld dat met behulp van deze (data) verbanden de infectiedruk van een weiland berekent. Uiteindelijk worden aan de hand van de infectiedruk, beweidingsschema's ontwikkeld die eenvoudig aan schapenhouders laten zien wanneer en hoe ze hun schapen moeten omweiden om wormbesmetting te voorkomen én tevens zo efficiënt mogelijk gebruik te maken van de beschikbare grond. De doelstelling van dit project is het valideren van factoren die de infectiedruk van een weiland bepalen, en het vertalen van deze factoren in ontwikkelcriteria voor een systeem dat de infectiedruk op een weiland berekent en vertaalt naar beweidingsschema's voor schapenhouders.