The purpose of this paper is to investigate which theoretical elements of adding value with? real estate are applied in practice in accommodating primary education and in what way these are elements relevant to the stakeholders. A literature study of usual CREM strategies has been used to build a theoretical framework with regard to the value a building can create for different stakeholders. Interviews were then held with various professionally involved people in order to understand to what extent the general theory is taken into account with regard to “added value” for the stakeholders of primary school buildings. The data show that CREM theory also can be applied to the “not for profit” school buildings, but that not all potential possibilities to add value with real estate for primary education seem to be applied in practice.
DOCUMENT
Introduction: The health-promoting school (HPS) approach was developed by the World Health Organization to create health promotion changes in the whole school system. Implementing the approach can be challenging for schools because schools are dynamic organizations with each a unique context. Many countries worldwide have a health promotion system in place in which healthy school (HS) advisors support schools in the process of implementing the HPS approach. Even though these HS advisors can take on various roles to provide support in an adaptive and context-oriented manner, these roles have not yet been described. The current study aims to identify and describe the key roles of the HS advisor when supporting schools during the dynamic process of implementing the HPS approach. Methods: The study was part of a project in which a capacity-building module was developed for and with HS advisors in the Netherlands. In the current study, a co-creation process enabled by participatory research was used in which researchers, HS advisors, national representatives, and coordinators of the Dutch HS program participated. Co-creation processes took place between October 2020 and November 2021 and consisted of four phases: (1) a narrative review of the literature, (2) interviews, (3) focus groups, and (4) a final check. Results: Five roles were identified. The role of “navigator” as a more central one and four other roles: “linking pin,” “expert in the field,” “critical friend,” and “ambassador of the HPS approach.” The (final) description of the five roles was recognizable for the HS advisors that participated in the study, and they indicated that it provided a comprehensive overview of the work of an HS advisor in the Netherlands. Discussion: The roles can provide guidance to all Dutch HS advisors and the regional public health organizations that employ them on what is needed to provide sufficient and context-oriented support to schools. These roles can inspire and guide people from other countries to adapt the roles to their own national context.
DOCUMENT
Societal one-way directed approaches of sustainable primary school building design cause persistent physical building problems. It affects the performances of the societal challenge of designing real sustainable school buildings, as well as the educational and social processes, and its end-user performances. Conventional building construction approaches build traditionally their designs on a syntheses of dialogues and consensus during decision-making processes, due to a variety of different interests. Principals define their ambitions and requirements into a team of mainly technical domain related disciplines. There are no design methods available that connect human systems and ecosystems integrated and balance the dynamic multi-level scaled mechanisms of human needs and sustainability development factors. The presented analytic framework recognizes similarity patterns between these multi-level scaled social systems, ecosystems and sustainable development entities, qualitatively as well as quantitatively. It delivers a new polarity based dynamic system that contributes to the client briefs and physical building morphological factors from a more sustainable development base. This theoretical approach establishes Sustainability-Centered Guidelines for primary schools (SCGs) design and building.
DOCUMENT
Primary school design is balancing between end-user needs and societal interests, and between traditional and innovative approaches. In current approaches, an unbalance affects end-users’ performances and obstructs innovative school-building design. The institutional system of design should not only be more aware of adjusting the quality design indicators to end-users, but they should actually do it in combination with the increasing need for more innovation in school-building designs. Present guidelines emphasize objective rational societal and traditional interests but underestimate the subjective essences of individual end-user needs and the abilities of intelligent school buildings to meet important requirements for present and future learning environments. Based on universal human needs and dynamic mechanisms relationships, this article addresses a number of reasons that cause these mismatches. We present a theoretical analysis to establish Needs Centred Guidelines for primary school design as a methodological tool to improve the balance between the societal and end-users’ needs, and to give more insight into underlying patterns in design processes. The guidelines are based on a variety of end-user psychological, physiological and bio-physical needs. This article explains how this analytic approach contributes to the attention for end-user physical learning environment needs and to innovate school design.
DOCUMENT
The ambition of a transition to a sustainable society brings forth the dual challenge to preserve historical buildings and simultaneously improve the energy performance of our built environment. While engineers claim that a dramatic reduction of energy use in the built environment is feasible, it has proven to be a difficult and twisting road.In this paper we focus on historical buildings, where difficulties of energy reduction are paramount, as such buildings provide local identity and a connection to our past. It is a EU policy objective to conserve and redesign heritage buildings like prisons, military barracks, factories, stations, and schools. Such redesign should also ensure reduction of energy use without compromising historical identity. In this paper we conceptually and empirically investigate how the two conflicting aspirations unfold. In particular we elaborate the obduracy and scripts of buildings, to clarify how they resist change and invite a specific use. We analyse the tensions between identity and energy conservation in a case study of a restoration project in Franeker. This buildinghas recently undergone a restoration, with energy efficiency as one of its goals.Scripts and networks are traced by a combination of methods, such as studyinglayout, materials and building history, and qualitative interviews with restoration architects and users. We identified three types of strategies to conserve identity and energy: design strategies; identity strategies and network strategies. Such strategies are also relevant for other efforts where conservation and innovation have to be reconciled.
DOCUMENT
There is an ongoing social debate concerning Dutch primary school design related to persistent physical environmental problems such as poor indoor quality and inflexible spatial elements. Increasing complexity and building construction process failures, as well as inexperienced school principals, also seem to be important impact factors. This analysis employed a multi-level model which reflects the interrelationship between needs, interests and views, which are in turn responsible for physiological, psychological and biophysical problems in the school-building design process. It shows that antagonistic interests seem to impede rational innovative pathways which could be used to enhance synergetic solutions. These interests impact on the process by affecting the objective decision-making process adversely, making the problems faced unnecessarily complex due to competing subjective desires. The new approach proposed here increases awareness by mirroring actors’ behaviour and their most important needs, possibly leading to a decrease in school-building design problems. By means of introducing a positive psychological approach and viewing these profound human needs as a social fractal, it is possible to create a new paradigm which might solve the school-design crisis. As a lever for changing the current processes, new tangible school-building design parameters also might become available. The aim of this study was to analyse the current problem patterns and assess the possibility of producing more synergetic solution patterns. On this basis, we developed a needs-centred guideline for primary schools.
LINK
BackgroundWhile the indoor environmental quality of classrooms is a potential issue because it may affect the wellbeing of school children, the relations are still poorly studied. This study aimed to investigate the relations between classroom characteristics and health and comfort of school children.Material and methodsA questionnaire was distributed among 1311 school children (8–12 years old, average 10) of 54 classrooms at 21 schools in The Netherlands. Additionally, the survey included an inspection of the school and its installations and an inspection of the classrooms surveyed using checklists, and monitoring of some environmental parameters (temperature, relative humidity and CO2 concentration) in the classrooms.ResultsAmong the children studied, 87% was bothered by noise, 63% by smells, 42% by sunlight when shining, 35% didn't like the temperature in the classroom (too cold or too warm) and 34% experienced temperature changes. Main diseases reported comprised of allergies (26%), rhinitis (17%), hay fever (16%) and eczema (16%). Health and comfort in non-traditional schools was better than in the traditional schools studied (A non-traditional school is a school in which the way of educating children is different from the traditional way of education, according to a different educational theory). Physical building characteristics of the classrooms studied in the traditional schools were associated with the Classroom Symptom Index (location of school building, heating system, solar devices hampering opening windows or ventilation) and the Classroom Comfort Index (ventilation type, window frame colour, floor material and vacuum cleaning frequency).ConclusionsMeasures to improve acoustical, air, and thermal conditions of children in classrooms are needed. More research is required on the use of different lighting systems and use of different colours in classrooms.
DOCUMENT
Active transport to school is associated with higher levels of physical activity in children. Promotion of active transport has therefore gained attention as a potential target to increase children’s physical activity levels. Recent studies have recognized that the distance between home and school is an important predictor for active travel among children. These studies did not yet use the promising global positioning system (GPS) methods to objectively assess active transport. This study aims to explore active transport to school in relation to the distance between home and school among a sample of Dutch elementary school children, using GPS. Seventy-nine children, aged 6-11 years, were recruited in six schools that were located in five cities in the Netherlands. All children were asked to wear a GPS receiver for one week. All measurements were conducted between December 2008 and April 2009. Based on GPS recordings, the distance of the trips between home and school were calculated. In addition, the mode of transport (i.e., walking, cycling, motorized transport) was determined using the average and maximum speed of the GPS tracks. Then, proportion of walking and cycling trips to school was determined in relation to the distance between home and school. Out of all school trips that were recorded (n = 812), 79.2% were classified as active transport. On average, active commuting trips were of a distance of 422 meters with an average speed of 5.2 km/hour. The proportion of walking trips declined significantly at increased school trip distance, whereas the proportion of cycling trips (β = 1.23, p < 0.01) and motorized transport (β = 3.61, p < 0.01) increased. Almost all GPS tracks less than 300 meters were actively commuted, while of the tracks above 900 meters, more than half was passively commuted. In the current research setting, active transport between home and school was the most frequently used mode of travel. Increasing distance seems to be associated with higher levels of passive transport. These results are relevant for those involved in decisions on where to site schools and residences, as it may affect healthy behavior among children. https://doi.org/10.1186/1471-2458-14-227 LinkedIn: https://www.linkedin.com/in/sanned/
MULTIFILE
The central aim of this thesis was to increase understanding of designing vocational learning environments at the school–work boundary. Four studies were conducted, focusing on learning environment designs at the school–work boundary and on design considerations of the actors involved in their construction, both from the world of school and the world of work.
DOCUMENT
In this chapter, we discuss the education of secondary school mathematics teachers in the Netherlands. There are different routes for qualifying as a secondary school mathematics teacher. These routes target different student teacher populations, ranging from those who have just graduated from high school to those who have already pursued a career outside education or working teachers who want to qualify for teaching in higher grades. After discussing the complex structure this leads to, we focus on the aspects that these different routes have in common. We point out typical characteristics of Dutch school mathematics and discuss the aims and challenges in teacher education that result from this. We give examples of different approaches used in Dutch teacher education, which we link to a particular model for designing vocational and professional learning environments.We end the chapter with a reflection on the current situation.
LINK