Background: Recent studies suggest that ethnic minority students underperform in standardised assessments commonly used to evaluate their progress. This disparity seems to also hold for postgraduate medical students and GP trainees, and may affect the quality of primary health care, which requires an optimally diverse workforce. Aims: To address the following: 1) to determine to what extent ethnic minority GP trainees are more at risk of being assessed as underperforming than their majority peers; 2) to investigate whether established underperformance appears in specific competence areas; and 3) to explore first and second-generation ethnic minority trainees’ deviations. Design & setting: Quantitative retrospective cohort design in Dutch GP specialty training (start years: 2015–2017). Method: In 2020–2021, the authors evaluated files on assessed underperformance of 1700 GP trainees at seven Dutch GP specialty training institutes after excluding five opt-outs and 165 incomplete datasets (17.4% ethnic minority trainees). Underperformance was defined as the occurrence of the following, which was prompted by the training institute: 1) preliminary dropout; 2) extension of the educational pathway; and/or 3) mandatory coaching pathways. Statistics Netherlands (CBS) anonymised the files and added data about ethnic group. Thereafter, the authors performed logistic regression for potential underperformance analysis and χ2 tests for competence area analysis. Results: Ethnic minority GP trainees were more likely to face underperformance assessments than the majority group (odds ratio [OR] 2.41, 95% confidence interval [CI] = 1.67 to 3.49). Underperformance was not significantly nested in particular competence areas. First-generation ethnic minority trainees seemed more at risk than their second-generation peers. Conclusion: Ethnic minority GP trainees seem more at risk of facing educational barriers than the majority group. Additional qualitative research on underlying factors is essential.
This paper discusses challenges in assessing design students within studio model education. It reflects on the assessment methods used in the M.Sc. Digital Design, Amsterdam University of Applied Sciences, with input from an online survey targeting former students and assessors of the programme. Building on the particularities they see in this assessment process and its perceived advantages and disadvantages; we reflect on the extent to which these methods respond to the intentions for their development. Lastly, we discuss these issues in relation to the literature with the purpose of providing input to others that, like us, are in search of improved assessment tools for studio-based education.
MULTIFILE
The present study was aimed at investigating the effects of a video feedback coaching intervention for upper-grade primary school teachers on students’ cognitive gains in scientific knowledge. This teaching intervention was designed with the use of inquiry-based learning principles for teachers, such as the empirical cycle and the posing of thought-provoking questions. The intervention was put into practice in 10 upper-grade classrooms. The trajectory comprised four lessons, complemented with two premeasures and two postmeasures. The control condition consisted of 11 upper-grade teachers and their students. The success of the intervention was tested using an established standardized achievement test and situated measures. In this way, by means of premeasure and postmeasure questionnaires and video data, an assessment could be made of the change in students’ scientific knowledge before, during, and after the intervention. In this study, we primarily focused on the dynamics of students’ real-time expressions of scientific knowledge in the classroom. Important indicators of the effect of the intervention were found. Through focusing on the number of explanations and predictions, a significant increase could be seen in the proportion of students’ utterances displaying scientific understanding in the intervention condition. In addition, students in the intervention condition more often reasoned on higher complexity levels than students in the control condition. No effect was found for students’ scientific knowledge as measured with a standardized achievement test. Implications for future studies are stressed, as well as the importance of enriching the evaluation of intervention studies by focusing on dynamics in the classroom.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Client: Taskforce for Applied Research (SIA), part of the Netherlands Organisation for Scientific Research (NWO), with funding from the ministry of Education, Culture and Science (OCW)Funder: RAAK (Regional Attention and Action for Knowledge circulation)This research is co-funded by the Taskforce for Applied Research (SIA), part of the Netherlands Organisation for Scientific Research (NWO), under the RAAK scheme.Project SASTDes aimed to resolve key issues in the sustainability assessment process of tourism destinations, with the objective to reduce the costs of assessments both in time and money, and to use the results of assessments for destination branding and marketing. The project’s core research question was: ‘How can sustainability assessments effectively and efficiently contribute to the sustainable development of tourism destinations and tourism products?’ All 7 work packages of this project were ultimately geared towards the construction of the SASTDes tool, an application enabling all elements of a destination sustainability assessment, with which DMOs can integrate sustainability into their strategic and operational management. All the project’s accomplishments are described in the Project Overview report that can be downloaded on this page. See under Research Output for individual reports.The consortium was led by BUas’ Centre for Sustainability, Tourism and Transport (CSTT). Knowledge partners were BUas’ associate professorships Sustainable Business Models (SBM) and Leisure and Tourism Experiences, Wageningen Environmental Research (WENR), part of Wageningen University & Research (WUR), and the associate professorship Data Science & ICT of Avans University of Applied Sciences. The municipalities of Breda, Goeree-Overflakkee and Schouwen-Duiveland, as well as Visit Zuid-Limburg, joined as destination partners. Tourism industry partners and NGO’s were Green Destinations, Follow, TUI Benelux, SeaGoingGreen, Fair Sayari, ECEAT, Treinreiswinkel, and bookdifferent.com.