In this paper we show the Casanova language (and its accompanying design pattern, Rule-Script-Draw) in action by building a series of games with it. In particular we discuss how Casanova is suitable for making games regardless of their genre: the Game of Life, a shooter game, an adventure game and a strategy game. We also discuss the difference between Casanova and existing frameworks.
Live programming is a style of development characterized by incremental change and immediate feedback. Instead of long edit-compile cycles, developers modify a running program by changing its source code, receiving immediate feedback as it instantly adapts in response. In this paper, we propose an approach to bridge the gap between running programs and textual domain-specific languages (DSLs). The first step of our approach consists of applying a novel model differencing algorithm, tmdiff, to the textual DSL code. By leveraging ordinary text differencing and origin tracking, tmdiff produces deltas defined in terms of the metamodel of a language. In the second step of our approach, the model deltas are applied at run time to update a running system, without having to restart it. Since the model deltas are derived from the static source code of the program, they are unaware of any run-time state maintained during model execution. We therefore propose a generic, dynamic patch architecture, rmpatch, which can be customized to cater for domain-specific state migration. We illustrate rmpatch in a case study of a live programming environment for a simple DSL implemented in Rascal for simultaneously defining and executing state machines.
In this paper, we report on interview data collected from 14 Deaf leaders across seven countries (Australia, Belgium, Ireland, the Netherlands, Switzerland, United Kingdom, and the United States) regarding their perspectives on signed language interpreters. Using a semi-structured survey questionnaire, seven interpreting researchers interviewed two Deaf leaders each in their home countries. Following transcription of the data, the researchers conducted a thematic analysis of the comments. Four shared themes emerged in the data, as follows: (a) variable level of confidence in interpreting direction, (b) criteria for selecting interpreters, (c) judging the competence of interpreters, and (d) strategies for working with interpreters. The results suggest that Deaf leaders share similar, but not identical, perspectives about working with interpreters, despite differing conditions that hold regarding how interpreting services are provided in their respective countries. When compared to prior studies of Deaf leaders’ perspectives of interpreters, these data indicate some positive trends in Deaf leaders’ experience with interpreters; however, results also point to a need for further work in creating an atmosphere of trust, enhancing interpreters’ language fluency, and developing mutual collaboration between Deaf leaders and signed language interpreters. De url van de uitgeversversie van het artikel is: http://dx.doi.org/10.1556/084.2017.18.1.5
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Community, lab, werkplaats, netwerk, systeem, multi-stakeholder leeromgeving, leerwerkplaats, hybride leeromgeving: de termen buitelen over elkaar heen. Het gaat om omgevingen waarbij betrokkenen vanuit verschillende werelden met elkaar samen werken, leren en innoveren over grenzen heen, vaak rondom een maatschappelijke opgave. Bij de HU is gekozen voor de term ‘rijke leeromgevingen’. Vanwege het samen werken, leren en innoveren over grenzen heen, vinden wij ‘grensoverstijgende leeromgevingen’ een passend concept.