Continuing professional development approaches such as professional learning communities (PLCs) could help schools to sustainably work on school improvement to meet the rapid changes in the world around us. Sustainability is achieved when the core components of the approach become a self-evident and functional part of the school (or: organizational routine), which is flexible and adaptive to ongoing work, and aimed at regular improvement. Achieving sustainability has been found to be a challenge for a lot of schools, however. Leadership is assumed to be crucial for sustainability. We studied leadership through a distributed leadership lens: all activities tied to the core work of the school that are designed by the school’s staff members to influence the motivation, knowledge, or practices of other members of the school organization were considered. As research into sustainability of professional development and leadership was scarce, this dissertation focused on the following question: What is the role of school leadership in schools that work sustainably on school improvement with PLCs? A case study design was used to gain in-depth insight into what leadership and sustainably working on school improvement with PLCs looks like in five Dutch secondary schools. The schools were intensively observed (approximately 160 hours per school), school (policy) documents were collected, social network questionnaires were administered, and the school leadership was interviewed. Based on four studies, that focused on leaders’ practices, knowledge brokerage, and beliefs, the role of school leadership appears to be threefold. They 1) adequately designed the organization for working with the PLC, 2) managed the teaching and learning program while considering the PLC, and 3) helped and supported the staff members’ development for working with the PLC. The way in which leaders carried out the triple role of leadership seemed to be related to different factors. These factors are situated at the personal, interpersonal, and school contextual levels. The dissertation shows what leadership practices were carried out in what way and provides practical implications resulting from that. The insights could inspire schools and school leadership to work sustainably on school improvement with PLCs too.
LINK
Many students persistently misinterpret histograms. This calls for closer inspection of students’ strategies when interpreting histograms and case-value plots (which look similar but are diferent). Using students’ gaze data, we ask: How and how well do upper secondary pre-university school students estimate and compare arithmetic means of histograms and case-value plots? We designed four item types: two requiring mean estimation and two requiring means comparison. Analysis of gaze data of 50 students (15–19 years old) solving these items was triangulated with data from cued recall. We found five strategies. Two hypothesized most common strategies for estimating means were confirmed: a strategy associated with horizontal gazes and a strategy associated with vertical gazes. A third, new, count-and-compute strategy was found. Two more strategies emerged for comparing means that take specific features of the distribution into account. In about half of the histogram tasks, students used correct strategies. Surprisingly, when comparing two case-value plots, some students used distribution features that are only relevant for histograms, such as symmetry. As several incorrect strategies related to how and where the data and the distribution of these data are depicted in histograms, future interventions should aim at supporting students in understanding these concepts in histograms. A methodological advantage of eye-tracking data collection is that it reveals more details about students’ problem-solving processes than thinking-aloud protocols. We speculate that spatial gaze data can be re-used to substantiate ideas about the sensorimotor origin of learning mathematics.
LINK
Introduction: The health-promoting school (HPS) approach was developed by the World Health Organization to create health promotion changes in the whole school system. Implementing the approach can be challenging for schools because schools are dynamic organizations with each a unique context. Many countries worldwide have a health promotion system in place in which healthy school (HS) advisors support schools in the process of implementing the HPS approach. Even though these HS advisors can take on various roles to provide support in an adaptive and context-oriented manner, these roles have not yet been described. The current study aims to identify and describe the key roles of the HS advisor when supporting schools during the dynamic process of implementing the HPS approach. Methods: The study was part of a project in which a capacity-building module was developed for and with HS advisors in the Netherlands. In the current study, a co-creation process enabled by participatory research was used in which researchers, HS advisors, national representatives, and coordinators of the Dutch HS program participated. Co-creation processes took place between October 2020 and November 2021 and consisted of four phases: (1) a narrative review of the literature, (2) interviews, (3) focus groups, and (4) a final check. Results: Five roles were identified. The role of “navigator” as a more central one and four other roles: “linking pin,” “expert in the field,” “critical friend,” and “ambassador of the HPS approach.” The (final) description of the five roles was recognizable for the HS advisors that participated in the study, and they indicated that it provided a comprehensive overview of the work of an HS advisor in the Netherlands. Discussion: The roles can provide guidance to all Dutch HS advisors and the regional public health organizations that employ them on what is needed to provide sufficient and context-oriented support to schools. These roles can inspire and guide people from other countries to adapt the roles to their own national context.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.